

Interferometric measurement of the long-term stability of joining techniques:

sample preparation

IND13 – T3D workshop: *Thermal Design & Dimensional Drift Issues* 14th euspen conference, Dubrovnik 6th June 2014

Hagen Lorenz, René Schödel

Thermal **D**esign and time-dependent **D**imensional **D**rift behaviour of sensors, materials and structures

Time and temperature dependence of materials & joints

Overview

- Dimensional & thermal stability
 - Wrung gauge blocks
 - Soldered, Bonded connections, *Fraunhofer IOF*
 - Screwed connections
 - Adhesive connections: spacers

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Thermal stability of steel gauge blocks

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Thermal stability of steel gauge blocks

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Silicatic Bonding || fused silica - cylinders

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Silicatic Bonding || fused silica - cylinders

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Au/Sn thin-film soldering || fused silica - cylinders

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Au/Sn thin-film soldering || fused silica - cylinders

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Sn/Ag/Cu Solderjet Bumping || fused silica - cylinders

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Sn/Ag/Cu Solderjet Bumping || fused silica - cylinders

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Fraunhofer IOF Thermal Expansion || fused silica - cylinders

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

5.44, Hagen Lorenz

Dimensional & thermal stability of joining techniques

Nationales Metrologieinstitut

Seite 12

Screwed connection (|| to ends)

Nationales Metrologieinstitut

Screwed connection (|| to ends)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Adhesive connection || silicon gauge blocks

2 gauge blocks á 15 mm +

dilute solution of synthetic resin

resin layermelting @ 150° C $d < 1 \, \mu$ m

before furnace 150°C

 $\frac{\text{gauge blocks:}}{= 30\ 094\ 200\ \pm 1000\ \text{nm}}$

in interferometer

joint length: 30

30 094 110 nm

Adhesive connection || silicon gauge blocks

2 gauge blocks á 15 mm synthetic resin layer $d < 1 \,\mu m$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Techniques to produce connections with very parallel end faces

- 1 very thin bonding layer
- **(2)** bonding in interferometer

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
5.44, Hagen Lorenz
Dir

Nationales Metrologieinstitut

Adhesive connection $(\perp \text{ to ends})$

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin 5.44, Hagen Lorenz

Nationales Metrologieinstitut

Adhesive connection (\perp to ends)

 $\Delta y = +1 \text{ nm}$

Adhesive connection with epoxy || steel gauge blocks

offset 25,008,219 nm

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin 5.44, Hagen Lorenz Nationales Metrologieinstitut

Adhesive connection with 0...20 µm spacers || steel gauge blocks

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Adhesive connection with 0...70 µm spacers || steel gauge blocks

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

5.44, Hagen Lorenz

Summary _

Demonstrated: connections of gauge blocks applicable for interferometry

Wrung steel gauge blocks

> are slightly sensitive to thermal treatment

Bonded & soldered connections, IOF

- > AuSn thin-film soldering, silicatic bonding: almost no change during 200 days
- SnAgCu Solderjet bumps are slightly sensitive to thermal treatment (40°C)

Screwed connection

> no drift detected during 1 year & stable with respect to thermal treatment

Adhesive connection

- Si single crystal with **synthetic resin**: slightly sensitive to thermal treatment
- epoxy adhesive not stable & sensitive to thermal treatment + humidity
- \blacktriangleright non-parallel glue gap \rightarrow tilting & length change
- > **spacers** can increase glue gap \rightarrow swelling ?

Nationales Metrologieinstitut

Thank you:

...and for your attention!

