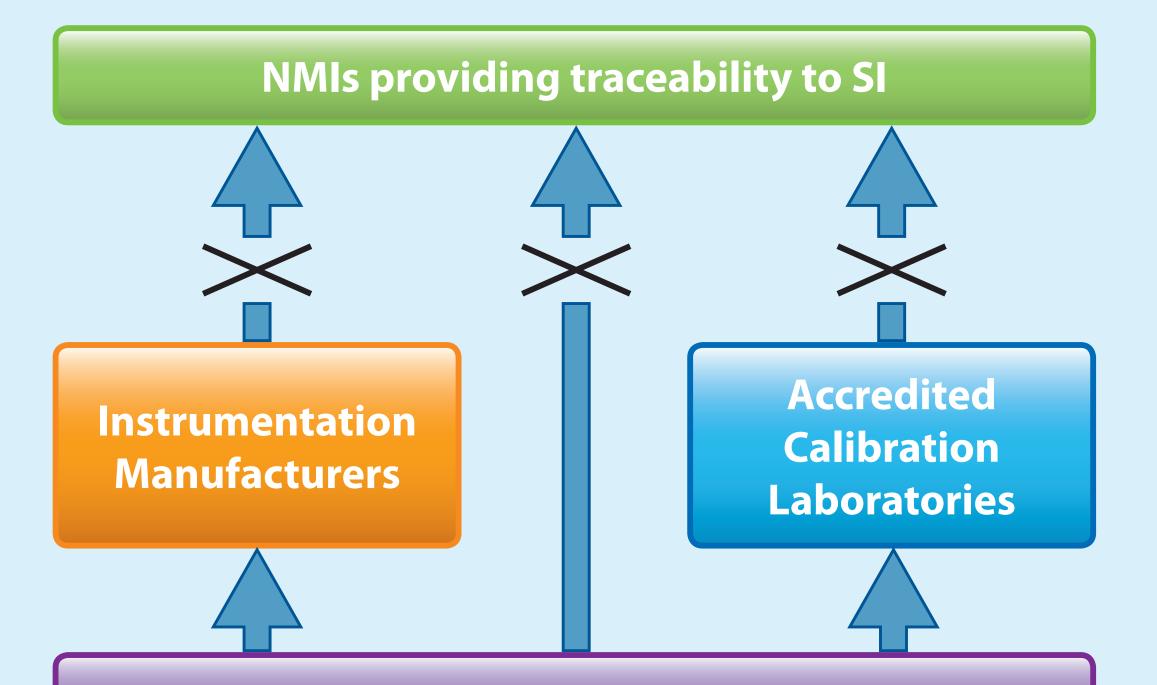
SIB62 RF-Circuits: Metrology for new electrical measurement quantities in high-frequency circuits



1. The Problem / Challenge

Over the past 10 years, suppliers of instruments used for high-frequency electromagnetic measurements have introduced entirely new ranges of products aimed at meeting the needs of today's end-users in industry and academia. These new instruments have introduced new measurement quantities and evolved existing measurement quantities to enable end-users to gain maximum insight into their target applications. However, at least 80 % of the parameter space of these new instruments is not backed-up by traceability mechanisms providing linkage to the SI.

The scope of the SI needs to be broadened in order to enable traceability to be established for these new instrument developments

- A state-of-the-art Vector Network Analyser these instruments offer:
- S-parameter measurement to 1100 GHz
- multi-port calibration using electronic calibration units
- differential S-parameter capability
- nonlinear analogues of S-parameters for large-signal active devices.

None of these parameters are currently traceable to the SI

End-users - Industry / Academia

Traceability Diagram showing the dislocation in traceability routes to SI (the blue arrows) for users and providers of new high-frequency electromagnetic quantities

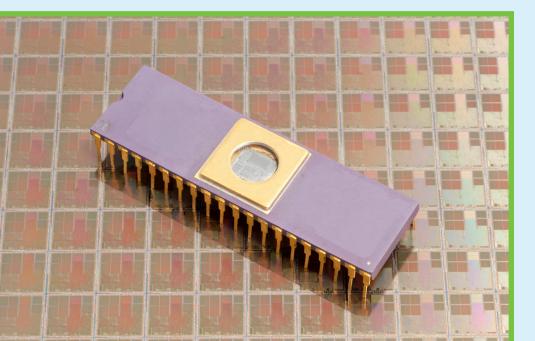
2. Application areas

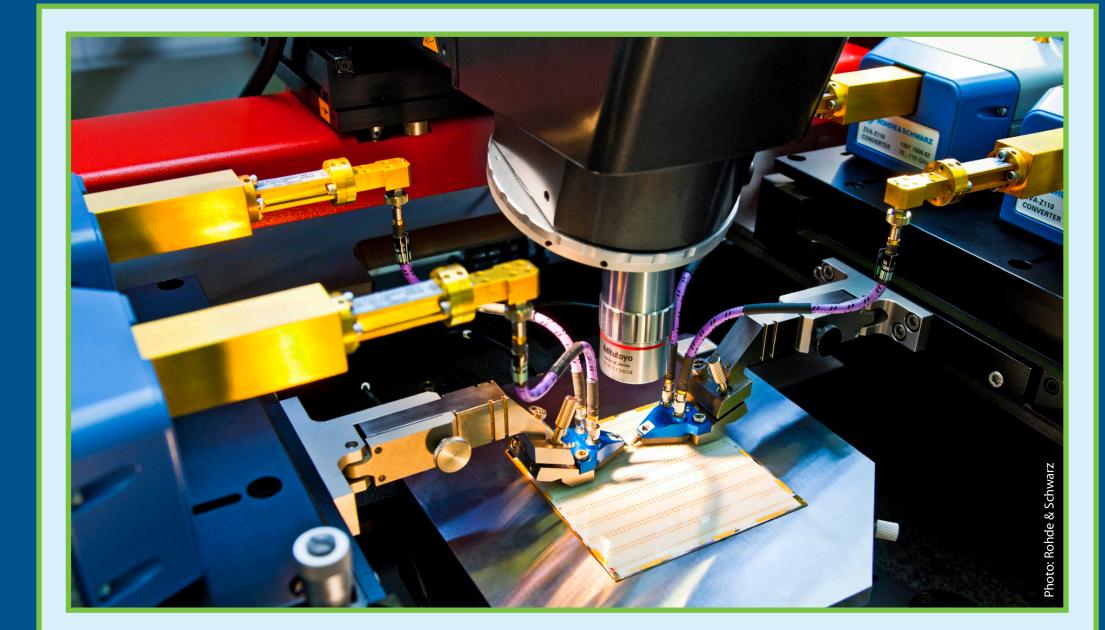
Consumer electronics: Laptops and smartphones using microwave digital signals

Security: Airport security scanners using millimetre-waves

Climate change monitoring: Environmental sensing using millimetre-waves

Medical: RF scanners for breast cancer detection


Next generation electronics and communications using nano-technology and/or THz/submillimetre-waves



3. The solution / approach

The solution / approach is to provide the required traceability for four application areas:

Work Package 1	S-parameters at millimetre- and submillimetre-waves (to 110 GHz in coaxial lines and to 1100 GHz in waveguides)
Work Package 2	Multi-port measurements and Electronic Calibration Units
Work Package 3	Differential S-parameters for planar circuits (e.g. Printed Circuit Boards) with application to Signal Integrity
Work Package 4	Nonlinear measurements Extreme impedance measurement
	Generic resources affecting all four application areas:
Work Package 5	 Vector measurement uncertainty techniques and verification processes
	A EURAMET Guide and International (IEEE) Standards

Differential S-parameters for planar circuits

4. Impact

The dislocations in the traceability routes to SI, shown in the Traceability Diagram, will be removed

- Set up a new Europe Technology Forum and hold six public meetings;
 - 3 Workshops

5. Consortium/Management

	Funded Partners							Unfunded Partners		REGs			
	NPL	CMI	EJPD	LNE	РТВ	SP	VSL	AGILENT	R&S	CTU	FBH	KU Leuven	UoL
WP1													
WP2													
WP3													
WP4													
WP5													

- 3 Training Courses
- New EURAMET Guide for VNAs
- Two IEEE Standards for coaxial connectors and waveguides
- Conferences European Microwave Conference and International Microwave Symposium
- Published Papers in IEEE Transactions and Microwave Magazine
- Table showing the consortium of partners and their involvement in each Technical Work Package (WP). Red dots indicate the Leader for each WP. The consortium includes:
- Funded Partners: The seven leading European NMIs in these areas
- Unfunded Partners: The world's top two instrumentation manufacturers in these areas (Agilent Technologies and Rohde & Schwarz)
- REGs: Four world-class academic institutes for these areas (Czech Technical University extreme impedance measurement / FBH electromagnetic modelling / KU Leuven – nonlinear measurement / University of Leeds – submillimetre-wave measurements)

The total cost for this JRP will be 3.3 M€. This is in line with the EMRP expectation that 'any proposal received for this SRT is expected to be significantly above the 2.7 $M \in$ guideline for proposals in this call'.

