Comparison of Source Match Measurements

J. Hoffmann, M. Wollensack, J. Ruefenacht, M. Zeier
3. June 2015
Outline

Introduction

Methods

Results
What is Equivalent Source Match

Splitters are used in direct comparison systems for power sensor calibration. The equivalent source match is a parameter of a splitter.

\[\Gamma_G = S_{33} - \frac{S_{23}S_{31}}{S_{21}} \]
Motivation

Several different methods for measuring Γ_G exist:

- How well do they match up?
- What are the uncertainties?
- Which equipment and measurement effort is needed?
Measurements for 3-Port Method

VNA Port 1

VNA Port 2

VNA Port 3

O

S

L

Johannes Hoffmann METAS 5 3. June 2015
Measurements for 3-Port Method

VNA Port 1

VNA Port 2

VNA Port 3
Measurements for 3-Port Method

VNA Port 1

VNA Port 2

VNA Port 3

O

S

L

Johannes Hoffmann METAS 5 3. June 2015
Measurements for 3-Port Method

VNA Port 1

VNA Port 2

VNA Port 3
Data Processing

1. Compute 1-port error coefficients
2. Use splitter for unknown thru at ports 1-2 and 1-3
3. Compute all S-parameters of splitter and Γ_G
Comments

- Requires 12 connections
- Requires expensive 3-Port VNA
- Requires cable movement
- Yields all S-parameters, all Γ_G, and all tracking terms
Measurements for Juroshek Method
Measurements for Juroshek Method

VNA Port

1

2

3

O

Johannes Hoffmann METAS 8 3. June 2015
Measurements for Juroshek Method
Data Processing

1. Convert S-parameters \(J_{33} = \frac{S_{11}}{S_{21}} \)
2. Do 1-Port cal with converted S-parameters
3. Source match equals equivalent source match \(\Gamma_G = e_{11} \)
Comments

- Requires only 5 connections
- Works with 2-port VNA
- No cable movement
- Yields only Γ_G of one port
Measurements for 2-Port Method

VNA Port

VNA Port

L

S

Measurements for 2-Port Method
Measurements for 2-Port Method

VNA Port 2

VNA Port 3

O
S
Measurements for 2-Port Method
Measurements for 2-Port Method
Data Processing

1. Do 1-Port cal at each port
2. Perform unknown thru with splitter
3. $\Gamma_G = \frac{S_{33L}S_{23S} - S_{33S}S_{23L}}{S_{23S} - S_{23L}}$
Comments

- Requires 10 connections
- Works with 2-port VNA
- Requires cable movement
- Yields Γ_G for each port and tracking ratio
VNA Tools II supports Juroshek, 3-Port and 2-Port technique. All methods work with linear uncertainty propagation.
Results with Generic Definition

\[|\Gamma_G| \]

- \(\text{Ju} \)
- \(2P \)
- \(3P \)

Frequency (Hz)

0 1 2 3 4 5

\(x \times 10^{10} \)

Uncertainties with Generic Definition

\[|\Gamma_{GJu} - \Gamma_{G3P}| \]
\[|\Gamma_{G2P} - \Gamma_{G3P}| \]
\[|\Gamma_{G3P} - \Gamma_{G3P}| \]

Frequency (Hz) \(\times 10^{10} \)
Results with Connector Effect

\[|\Gamma_G| \]

Frequency (Hz)

\[\times 10^{10} \]

Johannes Hoffmann METAS 17 3. June 2015
Uncertainties with Connector Effect

\[|\Gamma_{GJ} - \Gamma_{G3P}| \]
\[|\Gamma_{G2P} - \Gamma_{G3P}| \]
\[|\Gamma_{G3P} - \Gamma_{G3P}| \]

Frequency (Hz)
Conclusion

- Including the connector in the standard definition improves agreement
- METAS characterized standards have smaller uncertainty
- Juroshek puts high demands on noise and linearity of VNA
- 2-Port and 3-Port method yield comparable results