Using Uncertainty Matrices to Analyse Measurements of Multiple S-parameters

Nick Ridler and Martin Salter

National Physical Laboratory, UK

4th European ANAMET Meeting, 3rd June 2015, METAS, Switzerland
Overview

- Introduction
- Concept
- Example
- Uncertainty Ellipses
- Discussion
- Conclusion
Introduction

- Microwave measurements often contain interactions between multiple measurement parameters.

- For example, for a mismatch line (Beatty line), as input reflection goes up, forward transmission goes down.
Introduction (contd)

In this talk:

- Use uncertainty matrices to represent the interactions between measurement parameters
- Multiple (>1) complex-valued S-parameters

Why uncertainty matrices?

- Because these are useful when propagating uncertainties from one set of parameters to other parameters
Introduction (contd)

- For simplicity (here):
 - Concentrate on ‘just’ a 2-port device
 - Later on, we will assume symmetry ($S_{11} = S_{22}$)
 - And we will assume reciprocity ($S_{21} = S_{12}$)
 - The approach generalizes to n-port devices that are non-symmetric and non-reciprocal
Concept

One-port device

One complex-valued S-parameter, \(S_{11} \equiv (S_{11R}, S_{11I}) \)

Uncertainty matrix:

\[
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{11I}) \\
 u(S_{11I}, S_{11R}) & u^2(S_{11I})
\end{pmatrix}
\]
Concept (contd)

One-port device

The (2 x 2) uncertainty matrix shows the uncertainty in each component of the complex-valued S-parameter

i.e. S_{11_R} and S_{11_I}

\[
\begin{pmatrix}
 u^2(S_{11_R}) & u(S_{11_R}, S_{11_I}) \\
 u(S_{11_I}, S_{11_R}) & u^2(S_{11_I})
\end{pmatrix}
\]
Concept (contd)

One-port device

The (2 x 2) uncertainty matrix also shows the interaction between each component of the complex-valued S-parameter.

i.e. between S_{11R} and S_{11I}

$$\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{11I}) \\
 u(S_{11I}, S_{11R}) & u^2(S_{11I})
\end{pmatrix}$$
Two-port device

Four complex-valued S-parameters, S_{11}, S_{21}, S_{12}, S_{22}

Four (2 x 2) uncertainty matrices: one for each S-parameter

\[
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{11I}) \\
 u(S_{11I}, S_{11R}) & u^2(S_{11I})
\end{pmatrix}
\begin{pmatrix}
 u^2(S_{21R}) & u(S_{21R}, S_{21I}) \\
 u(S_{21I}, S_{21R}) & u^2(S_{21I})
\end{pmatrix}
\begin{pmatrix}
 u^2(S_{12R}) & u(S_{12R}, S_{12I}) \\
 u(S_{12I}, S_{12R}) & u^2(S_{12I})
\end{pmatrix}
\begin{pmatrix}
 u^2(S_{22R}) & u(S_{22R}, S_{22I}) \\
 u(S_{22I}, S_{22R}) & u^2(S_{22I})
\end{pmatrix}
\]
Concept (contd)

Two-port device

Each (2 x 2) uncertainty matrix shows the **uncertainty in, and interaction between**, each component in each complex-valued S-parameter, S_{11}, S_{21}, S_{12}, S_{22}

\[
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R},S_{11I}) \\
 u(S_{11I},S_{11R}) & u^2(S_{11I})
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u^2(S_{21R}) & u(S_{21R},S_{21I}) \\
 u(S_{21I},S_{21R}) & u^2(S_{21I})
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u^2(S_{12R}) & u(S_{12R},S_{12I}) \\
 u(S_{12I},S_{12R}) & u^2(S_{12I})
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u^2(S_{22R}) & u(S_{22R},S_{22I}) \\
 u(S_{22I},S_{22R}) & u^2(S_{22I})
\end{pmatrix}
\]
Concept (contd)

Two-port device

Each (2 x 2) uncertainty matrix shows the **uncertainty in, and interaction between**, each component in each complex-valued S-parameter, \(S_{11}, S_{21}, S_{12}, S_{22} \)

\[
\begin{pmatrix}
 u^2(S_{11_R}) & u(S_{11_R}, S_{11_I}) \\
 u(S_{11_I}, S_{11_R}) & u^2(S_{11_I})
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u^2(S_{21_R}) & u(S_{21_R}, S_{21_I}) \\
 u(S_{21_I}, S_{21_R}) & u^2(S_{21_I})
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u^2(S_{12_R}) & u(S_{12_R}, S_{12_I}) \\
 u(S_{12_I}, S_{12_R}) & u^2(S_{12_I})
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u^2(S_{22_R}) & u(S_{22_R}, S_{22_I}) \\
 u(S_{22_I}, S_{22_R}) & u^2(S_{22_I})
\end{pmatrix}
\]
Concept (contd)

Two-port device

But these (2 x 2) uncertainty matrices do not show the interaction between a component of one S-parameter and a component of a different S-parameter.

For example, for the interaction between S_{11R} and S_{21R}, we need the uncertainty matrix:

$$
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{21R}) \\
 u(S_{21R}, S_{11R}) & u^2(S_{21R})
\end{pmatrix}
$$
Concept (contd)

Two-port device

Or, for the interaction between S_{11R} and S_{21I},

we need the uncertainty matrix:

$$
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{21I}) \\
 u(S_{21I}, S_{11R}) & u^2(S_{21I})
\end{pmatrix}
$$
Concept (contd)

Two-port device

To represent the interaction between:

- both components (real and imaginary)
- of all four S-parameters (S_{11}, S_{21}, S_{12}, S_{22})

We need a single ([4x2] x [4x2]) matrix

≡ (8 x 8) matrix
Concept (contd)

Two-port device

Four complex-valued S-parameters, S_{11}, S_{21}, S_{12}, S_{22}

Full uncertainty matrix: one (8 x 8) matrix

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th></th>
<th>S_{21}</th>
<th></th>
<th>S_{12}</th>
<th></th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
</tr>
<tr>
<td>S_{11}</td>
<td>$u^2(S_{11R})$</td>
<td>$u(S_{11R}, S_{11I})$</td>
<td>$u(S_{11R}, S_{21R})$</td>
<td>$u(S_{11R}, S_{21I})$</td>
<td>$u(S_{11R}, S_{12R})$</td>
<td>$u(S_{11R}, S_{12I})$</td>
<td>$u(S_{11R}, S_{22R})$</td>
</tr>
<tr>
<td>S_{21}</td>
<td>$u(S_{21R}, S_{11R})$</td>
<td>$u(S_{21R}, S_{11I})$</td>
<td>$u^2(S_{21R})$</td>
<td>$u(S_{21R}, S_{21I})$</td>
<td>$u(S_{21R}, S_{12R})$</td>
<td>$u(S_{21R}, S_{12I})$</td>
<td>$u(S_{21R}, S_{22R})$</td>
</tr>
<tr>
<td>S_{12}</td>
<td>$u(S_{12R}, S_{11R})$</td>
<td>$u(S_{12R}, S_{11I})$</td>
<td>$u(S_{12R}, S_{21R})$</td>
<td>$u(S_{12R}, S_{21I})$</td>
<td>$u^2(S_{12R})$</td>
<td>$u(S_{12R}, S_{12I})$</td>
<td>$u(S_{12R}, S_{22R})$</td>
</tr>
<tr>
<td>S_{22}</td>
<td>$u(S_{22R}, S_{11R})$</td>
<td>$u(S_{22R}, S_{11I})$</td>
<td>$u(S_{22R}, S_{21R})$</td>
<td>$u(S_{22R}, S_{21I})$</td>
<td>$u(S_{22R}, S_{12R})$</td>
<td>$u(S_{22R}, S_{12I})$</td>
<td>$u^2(S_{22R})$</td>
</tr>
</tbody>
</table>
Concept (contd)

Two-port device

Four complex-valued S-parameters, S_{11}, S_{21}, S_{12}, S_{22}

Full uncertainty matrix: one (8 x 8) matrix

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th></th>
<th>S_{21}</th>
<th></th>
<th>S_{12}</th>
<th></th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
</tr>
<tr>
<td>S_{11}</td>
<td>Real</td>
<td>$u^2(S_{11r})$</td>
<td>$u(S_{11r}, S_{11i})$</td>
<td>$u(S_{11r}, S_{21r})$</td>
<td>$u(S_{11r}, S_{21i})$</td>
<td>$u(S_{11r}, S_{12r})$</td>
<td>$u(S_{11r}, S_{12i})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>$u(S_{11r}, S_{11i})$</td>
<td>$u^2(S_{11i})$</td>
<td>$u(S_{11i}, S_{21r})$</td>
<td>$u(S_{11i}, S_{21i})$</td>
<td>$u(S_{11i}, S_{12r})$</td>
<td>$u(S_{11i}, S_{12i})$</td>
</tr>
<tr>
<td>S_{21}</td>
<td>Real</td>
<td>$u(S_{21r}, S_{11i})$</td>
<td>$u^2(S_{21r})$</td>
<td>$u(S_{21r}, S_{21i})$</td>
<td>$u(S_{21r}, S_{12r})$</td>
<td>$u(S_{21r}, S_{12i})$</td>
<td>$u(S_{21r}, S_{22r})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>$u(S_{21r}, S_{11i})$</td>
<td>$u(S_{21r}, S_{21i})$</td>
<td>$u^2(S_{21i})$</td>
<td>$u(S_{21i}, S_{12r})$</td>
<td>$u(S_{21i}, S_{12i})$</td>
<td>$u(S_{21i}, S_{22r})$</td>
</tr>
<tr>
<td>S_{12}</td>
<td>Real</td>
<td>$u(S_{12r}, S_{11i})$</td>
<td>$u(S_{12r}, S_{21r})$</td>
<td>$u(S_{12r}, S_{21i})$</td>
<td>$u^2(S_{12r})$</td>
<td>$u(S_{12r}, S_{12i})$</td>
<td>$u(S_{12r}, S_{22r})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>$u(S_{12r}, S_{11i})$</td>
<td>$u(S_{12r}, S_{21i})$</td>
<td>$u(S_{12r}, S_{21i})$</td>
<td>$u^2(S_{12i})$</td>
<td>$u(S_{12i}, S_{12r})$</td>
<td>$u(S_{12i}, S_{22r})$</td>
</tr>
<tr>
<td>S_{22}</td>
<td>Real</td>
<td>$u(S_{22r}, S_{11i})$</td>
<td>$u(S_{22r}, S_{21r})$</td>
<td>$u(S_{22r}, S_{21i})$</td>
<td>$u(S_{22r}, S_{12r})$</td>
<td>$u(S_{22r}, S_{12i})$</td>
<td>$u^2(S_{22r})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>$u(S_{22r}, S_{11i})$</td>
<td>$u(S_{22r}, S_{21i})$</td>
<td>$u(S_{22r}, S_{21i})$</td>
<td>$u(S_{22r}, S_{12i})$</td>
<td>$u(S_{22r}, S_{12i})$</td>
<td>$u^2(S_{22i})$</td>
</tr>
</tbody>
</table>
Concept (contd)

Two-port device

The off-diagonal elements (**shown in orange**) are used to represent the interactions between a component of one S-parameter and a component of a different S-parameter.

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th></th>
<th>S_{21}</th>
<th></th>
<th>S_{12}</th>
<th></th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
</tr>
<tr>
<td>S_{11}</td>
<td>$u^2(S_{11R})$</td>
<td>$u(S_{11R},S_{11I})$</td>
<td>$u(S_{11R},S_{21R})$</td>
<td>$u(S_{11R},S_{21I})$</td>
<td>$u(S_{11R},S_{12R})$</td>
<td>$u(S_{11R},S_{12I})$</td>
<td>$u(S_{11R},S_{22R})$</td>
</tr>
<tr>
<td>Imag</td>
<td>$u(S_{11R},S_{11I})$</td>
<td>$u^2(S_{11})$</td>
<td>$u(S_{11I},S_{21R})$</td>
<td>$u(S_{11I},S_{21I})$</td>
<td>$u(S_{11I},S_{12R})$</td>
<td>$u(S_{11I},S_{12I})$</td>
<td>$u(S_{11I},S_{22R})$</td>
</tr>
<tr>
<td>S_{21}</td>
<td>$u(S_{21R},S_{11R})$</td>
<td>$u(S_{21R},S_{11I})$</td>
<td>$u^2(S_{21R})$</td>
<td>$u(S_{21R},S_{21I})$</td>
<td>$u(S_{21R},S_{12R})$</td>
<td>$u(S_{21R},S_{12I})$</td>
<td>$u(S_{21R},S_{22R})$</td>
</tr>
<tr>
<td>Imag</td>
<td>$u(S_{21I},S_{11R})$</td>
<td>$u(S_{21I},S_{11I})$</td>
<td>$u(S_{21I},S_{21R})$</td>
<td>$u^2(S_{21I})$</td>
<td>$u(S_{21I},S_{12R})$</td>
<td>$u(S_{21I},S_{12I})$</td>
<td>$u(S_{21I},S_{22R})$</td>
</tr>
<tr>
<td>S_{12}</td>
<td>$u(S_{12R},S_{11R})$</td>
<td>$u(S_{12R},S_{11I})$</td>
<td>$u(S_{12R},S_{21R})$</td>
<td>$u(S_{12R},S_{21I})$</td>
<td>$u^2(S_{12R})$</td>
<td>$u(S_{12R},S_{12I})$</td>
<td>$u(S_{12R},S_{22R})$</td>
</tr>
<tr>
<td>Imag</td>
<td>$u(S_{12I},S_{11R})$</td>
<td>$u(S_{12I},S_{11I})$</td>
<td>$u(S_{12I},S_{21R})$</td>
<td>$u(S_{12I},S_{21I})$</td>
<td>$u(S_{12I},S_{12R})$</td>
<td>$u^2(S_{12I})$</td>
<td>$u(S_{12I},S_{22R})$</td>
</tr>
<tr>
<td>S_{22}</td>
<td>$u(S_{22R},S_{11R})$</td>
<td>$u(S_{22R},S_{11I})$</td>
<td>$u(S_{22R},S_{21R})$</td>
<td>$u(S_{22R},S_{21I})$</td>
<td>$u(S_{22R},S_{12R})$</td>
<td>$u(S_{22R},S_{12I})$</td>
<td>$u^2(S_{22R})$</td>
</tr>
<tr>
<td>Imag</td>
<td>$u(S_{22I},S_{11R})$</td>
<td>$u(S_{22I},S_{11I})$</td>
<td>$u(S_{22I},S_{21R})$</td>
<td>$u(S_{22I},S_{21I})$</td>
<td>$u(S_{22I},S_{12R})$</td>
<td>$u(S_{22I},S_{12I})$</td>
<td>$u(S_{22I},S_{22R})$</td>
</tr>
</tbody>
</table>
Concept (contd)

Two-port device

The off-diagonal elements (shown in orange) are used to represent the interactions between a component of one S-parameter and a component of a different S-parameter.

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th></th>
<th>S_{21}</th>
<th></th>
<th>S_{12}</th>
<th></th>
<th>S_{22}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>S_{11} Real</td>
<td>$u^2(S_{11R})$</td>
<td>$u(S_{11R},S_{S11})$</td>
<td>$u(S_{11R},S_{21R})$</td>
<td>$u(S_{11R},S_{11I})$</td>
<td>$u(S_{11R},S_{12R})$</td>
<td>$u(S_{11R},S_{12I})$</td>
<td>$u(S_{11R},S_{22R})$</td>
<td>$u(S_{11R},S_{22I})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{21} Real</td>
<td>$u(S_{21R},S_{11R})$</td>
<td>$u^2(S_{21R})$</td>
<td>$u(S_{21R},S_{21R})$</td>
<td>$u(S_{21R},S_{21I})$</td>
<td>$u^2(S_{21R})$</td>
<td>$u(S_{21R},S_{12R})$</td>
<td>$u(S_{21R},S_{12I})$</td>
<td>$u(S_{21R},S_{22R})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{12} Real</td>
<td>$u(S_{12R},S_{11R})$</td>
<td>$u(S_{12R},S_{11I})$</td>
<td>$u(S_{12R},S_{21I})$</td>
<td>$u^2(S_{12R})$</td>
<td>$u(S_{12R},S_{12I})$</td>
<td>$u(S_{12R},S_{22R})$</td>
<td>$u(S_{12R},S_{22I})$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{22} Real</td>
<td>$u(S_{22R},S_{11R})$</td>
<td>$u(S_{22R},S_{11I})$</td>
<td>$u(S_{22R},S_{21R})$</td>
<td>$u(S_{22R},S_{21I})$</td>
<td>$u^2(S_{22R})$</td>
<td>$u(S_{22R},S_{12R})$</td>
<td>$u(S_{22R},S_{12I})$</td>
<td>$u^2(S_{22R})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Concept (contd)

Without loss of generality, we examine just S_{11} and S_{21}

Full uncertainty matrix: one (4 x 4) matrix

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th></th>
<th>S_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
<td>Real</td>
</tr>
<tr>
<td>S_{11}</td>
<td>Real</td>
<td>$u^2(S_{11R})$</td>
<td>$u(S_{11R},S_{11I})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>$u(S_{11R},S_{11I})$</td>
<td>$u^2(S_{11I})$</td>
</tr>
<tr>
<td>S_{21}</td>
<td>Real</td>
<td>$u(S_{21R},S_{11R})$</td>
<td>$u(S_{21R},S_{11I})$</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>$u(S_{21I},S_{11R})$</td>
<td>$u(S_{21I},S_{11I})$</td>
</tr>
</tbody>
</table>
Concept (contd)

First, we have the (2 x 2) sub-matrix for S_{11}: (S_{11R}, S_{11I})

```
<table>
<thead>
<tr>
<th></th>
<th>$S_{11}$ Real</th>
<th>$S_{11}$ Imag</th>
<th>$S_{21}$ Real</th>
<th>$S_{21}$ Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{11}$ Real</td>
<td>$u^2(S_{11R})$</td>
<td>$u(S_{11R}, S_{11I})$</td>
<td>$u(S_{11R}, S_{21R})$</td>
<td>$u(S_{11R}, S_{21I})$</td>
</tr>
<tr>
<td>$S_{11}$ Imag</td>
<td>$u(S_{11R}, S_{11I})$</td>
<td>$u^2(S_{11I})$</td>
<td>$u(S_{11I}, S_{21R})$</td>
<td>$u(S_{11I}, S_{21I})$</td>
</tr>
<tr>
<td>$S_{21}$ Real</td>
<td>$u(S_{21R}, S_{11R})$</td>
<td>$u(S_{21R}, S_{11I})$</td>
<td>$u^2(S_{21R})$</td>
<td>$u(S_{21R}, S_{21I})$</td>
</tr>
<tr>
<td>$S_{21}$ Imag</td>
<td>$u(S_{21R}, S_{11I})$</td>
<td>$u(S_{21I}, S_{11R})$</td>
<td>$u(S_{21I}, S_{21R})$</td>
<td>$u^2(S_{21I})$</td>
</tr>
</tbody>
</table>
```

\[
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{11I}) \\
 u(S_{11I}, S_{11R}) & u^2(S_{11I})
\end{pmatrix}
\]

shows the interaction between S_{11R} and S_{11I}
and the (2 x 2) sub-matrix for S_{21}: (S_{21R}, S_{21I})

\[
\begin{pmatrix}
 u^2(S_{21R}) & u(S_{21R}, S_{21I}) \\
 u(S_{21I}, S_{21R}) & u^2(S_{21I})
\end{pmatrix}
\]

shows the interaction between S_{21R} and S_{21I}
Concept (contd)

But we can also have the (2 x 2) sub-matrix: \((S_{11_R}, S_{21_R})\)

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th>S_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>S_{11}</td>
<td>Real</td>
<td>(u^2(S_{11_R}))</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>(u(S_{11_I}, S_{11_R}))</td>
</tr>
<tr>
<td>S_{21}</td>
<td>Real</td>
<td>(u(S_{21_R}, S_{11_R}))</td>
</tr>
<tr>
<td></td>
<td>Imag</td>
<td>(u(S_{21_I}, S_{11_R}))</td>
</tr>
</tbody>
</table>

\[
\begin{pmatrix}
 u^2(S_{11_R}) & u(S_{11_R}, S_{21_R}) \\
 u(S_{21_R}, S_{11_R}) & u^2(S_{21_R})
\end{pmatrix}
\]

shows the interaction between \(S_{11_R}\) and \(S_{21_R}\)
Concept (contd)

And also the (2 x 2) sub-matrix: \((S_{11R}, S_{21I})\)

\[
\begin{pmatrix}
 u^2(S_{11R}) & u(S_{11R}, S_{21I}) \\
 u(S_{21I}, S_{11R}) & u^2(S_{21I})
\end{pmatrix}
\]

shows the interaction between \(S_{11R}\) and \(S_{21I}\)
Concept (contd)

and the (2 x 2) sub-matrix: \((S_{11I}, S_{21R})\)

<table>
<thead>
<tr>
<th></th>
<th>(S_{11I})</th>
<th>(S_{21R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{11I})</td>
<td>(u^2(S_{11R}))</td>
<td>(u(S_{11R}, S_{11I}))</td>
</tr>
<tr>
<td>(S_{21R})</td>
<td>(u(S_{11I}, S_{11R}))</td>
<td>(u^2(S_{11I}))</td>
</tr>
</tbody>
</table>

\[
\begin{pmatrix}
 u^2(S_{11I}) & u(S_{11I}, S_{21R}) \\
 u(S_{21R}, S_{11I}) & u^2(S_{21R})
\end{pmatrix}
\]

shows the interaction between \(S_{11I}\) and \(S_{21R}\)
And finally the (2 x 2) sub-matrix: \((S_{11I}, S_{21I})\)

\[
\begin{pmatrix}
S_{11I} & S_{21I} \\
S_{21I} & S_{11I}
\end{pmatrix}
\]

shows the interaction between \(S_{11I}\) and \(S_{21I}\)
Concept (contd)

So, the full (4 x 4) uncertainty matrix can effectively be represented using 6 two-dimensional vector sub-measurands

- \((S_{11R}, S_{11I})\) \(S_{11}\)
- \((S_{21R}, S_{21I})\) \(S_{21}\)
- \((S_{11R}, S_{21R})\)
- \((S_{11R}, S_{21I})\)
- \((S_{11I}, S_{21R})\)
- \((S_{11I}, S_{21I})\)
Example – measurements

- Mismatch two-port – designed and built by OML, Inc
- WR-10 waveguide
- 75 GHz to 110 GHz
- Measure: \(S_{11} \) and \(S_{21} \)

\[
S_{11R} \quad S_{11I} \quad S_{21R} \quad S_{21I}
\]
Beatty line - measurements

Magnitude of S_{11} and S_{21}, derived from the S-parameter measurements
Beatty line – measurements (contd)

Magnitude of the vectors \((S_{11R}, S_{21R}) \) and \((S_{11I}, S_{21I}) \), derived from the S-parameter measurements
Beatty line – measurements (contd)

Magnitude of the vectors \((S_{11R}, S_{21I})\) and \((S_{11I}, S_{21R})\), derived from the S-parameter measurements
Uncertainty Ellipses

(2 x 2) uncertainty matrices

$$V = \begin{pmatrix} s^2(\bar{x}) & s(\bar{x}, \bar{y}) \\ s(\bar{y}, \bar{x}) & s^2(\bar{y}) \end{pmatrix}$$

can be used to construct ellipses to show regions of uncertainty

$$(S - \bar{S})^T V^{-1} (S - \bar{S}) = k^2$$

where k is a coverage factor
Uncertainty Ellipses (contd)

Uncorrelated uncertainties . . .

Positively correlated uncertainties . . .

Negatively correlated uncertainties . . .
Uncertainty ellipses for 6 two-dimensional vector sub-measurands

- \((S_{11,R}, S_{11,I})\) for \(S_{11}\)
- \((S_{21,R}, S_{21,I})\) for \(S_{21}\)
- \((S_{11,R}, S_{21,R})\)
- \((S_{11,R}, S_{21,I})\)
- \((S_{11,I}, S_{21,R})\)
- \((S_{11,I}, S_{21,I})\)
Uncertainty ellipses for 6 two-dimensional vector sub-measurands

- \((S_{11R}, S_{11I})\) \(S_{11}\)
- \((S_{21R}, S_{21I})\) \(S_{21}\)
- \((S_{11R}, S_{21R})\)
- \((S_{11R}, S_{21I})\)
- \((S_{11I}, S_{21R})\)
- \((S_{11I}, S_{21I})\)
Uncertainty ellipses for 6 two-dimensional vector sub-measurands

- \((S_{11R}, S_{11I}) \)
- \((S_{21R}, S_{21I}) \)
- \((S_{11R}, S_{21R}) \)
- \((S_{11R}, S_{21I}) \)
- \((S_{11I}, S_{21R}) \)
- \((S_{11I}, S_{21I}) \)
Summary

- Multiple S-parameter measurements require a fully populated uncertainty matrix to capture all necessary information.
 - For example, for a two-port device, the four S-parameters require a (8 x 8) uncertainty matrix.
- The diagonal elements give the uncertainties in the components of each S-parameter.
- The off-diagonal elements characterize the interactions between components of different S-parameters.
Summary (contd)

- Multiple (2 x 2) sub-matrices can be used to evaluate and explore structure in the full uncertainty matrix.
- These representations can be useful for propagation of uncertainties and for comparing different sets of measurements (to demonstrate equivalence).
- To do this, multiple S-parameters should be considered as a single (higher dimensional) vector measurand.
 - For example, for a two-port device, the four S-parameters can be represented using a single 8-dimensional vector measurand, with an associated (8 x 8) uncertainty matrix.
Acknowledgement

The authors thank Yuenie Lau (OML, Inc) for the loan of the mismatch waveguide line.

This work was funded through the European Metrology Research Programme (EMRP) Project SIB62 ‘Metrology for New Electrical Measurement Quantities in High-frequency Circuits’.

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.