Waveguide Tolerances

Siddhartha Sinha, Franz-Josef Schmückle Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik Berlin, June 3, 2015

METAS, Bern

Contents

- Application in measurement equipments
- Comparison of different numerical solvers (TD, FD) and different discretization schemes (Accuracy comparison)
- Rectangular Waveguide Tolerances
 - Rounded to Straight Edge
 - Shift
 - Size Variation
 - Rotation
- Conclusion

Application in measurement equipments

Influence in measurement equipments

- Measurement equipments using hollow waveguide sections
- Limitating deteriorations by misalignment or rotation

Accuracy Comparison between 3 Cases

TD, Variable Hex Mesh

TD, Uniform Hex Mesh

FD, Tet Mesh

Accuracy Comparison between 3 Cases – WM250

FD, Tet Mesh

TD, Variable Hex Mesh

TD, Uniform Hex Mesh

Rounded to Straight Edge – WM250

Rounded to Straight Edge – WM250

Institut

Shift – WM250

2 Parameters

- Shift radius
- Shift angle

Low overlap happens with $\phi pprox 0^\circ$, 90°

High overlap happens with $_{8} \qquad \phi \approx 45^{\circ}$

Shift (r/a)	Max. Reflection (dB)
0.01	-50
0.02	-40
0.03	-35
0.05	-25
0.1	-15

Result:

S11 only depends on the overlap area

Size Variation – WM250

Group G1 a=unchanged b=varies

Group G2 a=varies b=unchanged

Group G3 Both a and b either increases or decreases

Group G4 (a= increases, b= decreases) and viceversa

Size Change (s ₁ /a) or (s ₂ /a)	Max. Reflection (dB)
±0.01	-35
±0.02	-30
±0.03	-25
±0.05	-20
±0.1	-15

Rotation–WM250

20⁰ degree rotation Field inside waveguide

Conclusion

Simulation difficulties

- In both cases, surface roughness and waveguide misalignment TD and FD solvers provide different accuracies in the result.
- High accuracy necessary, but only achievable with FD.
- Proper tuning of the mesh is highly recommended high mesh density necessary.
- Still very small details cannot be included.

Waveguide Tolerances

- Eg.: waveguide WR-250 with a bandwidth from 750...1100 GHz (cutoff 600 GHz).
- Various configurations simulated.
- Very good agreement for rounded edge in comparison to IEEE result.
- Already small misalignments and rotations can result in critical influence.

