

Studies on surface roughness for rectangular waveguide structures

Christian Lehmann
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Berlin

Contents

- Modeling and numerical problems
- Overview of analytical approaches
- Simulated surfaces
- Results
- Conclusion

Activity 1: Losses in waveguides – Simulation Difficulties

Modeling and numerical problems

- Problems with the propagation constant in FD.
- Propagation constant from Time Domain.
- All other results best from FD.
- But hexahedral mesh necessary (large memory resource needed).
- Modeling the roughness has to account for very large ratios between smallest and largest cell size.
 - Difficulties in convergence.
 - Problems with eigenmode solvers (bad matrix condition).
- Common similar discretization scheme for all roughness shapes.
- Delay in project.
- Presently first results with promising outcome.

Activity 1: Losses in waveguides – Analytical approaches

Power Loss Method

- Basic Maxwell
- Phase constant β is not influenced by the decay α

for High-Speed Digital Designs

Fitting Parameters for α

1D periodic structures (Hammerstad & Jensen)

conductivity profile due to roughness

15

loss power density rough surface

2D periodic structures (Hall & Heck)

$$\alpha_{\text{cond. rough}} = \alpha_{\text{cond. smooth}} \cdot K_{SR}$$

Conductivity Profile

Calibrate profile parameters with measurements

G. Gold, K. Helmreich 2012: A Physical Model for Skin Effect in Rough Surfaces

Activity 1 : Losses in waveguides – Simulated Surfaces

roughnessmod el	not-to-scaleplot	$\frac{a}{r_{RMS}}$	hex. meshcells (FD)
0=none		0	31k
1=layer		?	44k
2=rampT		$\sqrt{3}$	250k
3=stepT		$\sqrt{2}$	238k
4=rampL		$\sqrt{3}$	236k
5=stepL		$\sqrt{2}$	231k
6=tower		1.4186*	1.3M
7=tower_inv		1.4186*	1.3M

Meshing

 cell resolution in different directions and on the surface

Model type (WL-86)

- flat, ramp, step, layered
- repeating in longitudinal/transversal direction or both

Model dependent parameters

- filling rate (steps/towers)
- conductivity profile (layer)

Surface parameters

- period length
- roughness
- border thickness

Dimensions

- waveguide width-height
- border thickness

Material and models

- H&J model or regular Maxwell
- conductivity
- solver (freg/time)

^{*} with a filling rate of $\alpha_1=\alpha_2={}^2/_3$

Propagation constant

- Time domain simulation
- Comparison between r_{RMS} = 1 δ and r_{RMS} = 10 δ
- For low r_{RMS} = 1 δ the phase constant is nearly model independent.
- Influence detectable only for higher r_{RMS}
- Separation between models even difficult for higher r_{RMS}

Roughly depending only on r_{RMS}

Roughness effects 1

- Frequency domain simulation
- Different frequency behaviour for different profile structures

• Roughness r_{RMS} < 3 δ not possible

- here 360 nm.

Roughness effects 2

- Frequency domain simulation
- Different profile structures yield different frequency behaviour.

Roughness effects 3

- @3240 GHz
- Comparison to Hammerstad & Jensen (model 2) under research

Roughness replacement by layers

- Frequency domain simulation
- Different layer thickness

• Number of layers depending on r_{RMS} =

Layer conductivity depending on several parameters, here as example

Roughness replacement by layers

- Frequency domain simulation
- Example for r_{RMS} = 120 nm
- Comparison to profile structures not yet finished

Braun Institut

Activity 1: Conclusion

- Difficult simulation conditions in solver
 - Dense discretization and shape independent distribution.
- Time domain only for propagation constant.
- Frequency best for 3D structures.
- Present results promising
 - Some more results can verify the analytical models
 - Layer model by Gold & Helmreich with best chances

