Waveguide Probes

Siddhartha Sinha, Franz-Josef Schmückle Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik Berlin, June 3, 2015

METAS, Bern

Introduction

- Waveguide chosen for probe modeling
 - WM-710, a=710 μ m, f_c = 211 GHz, Band = 260 400 GHz
- Develop a waveguide to CPW (GSG) probe model
 - Parameters are free but should represent typical values
- Different antenna configurations for waveguide excitation
 - Vivaldi antenna
 - Patch antenna transverse plane
 - Patch antenna E plane
- Different probe Tip and CPW geometries
 - Probe tip pitch = 30 µm
- Explore radiation and coupling effects during probing
- Parasitic modes
- Effect of absorber, geometrical variations

Partitioning of the analysis

A three step approach was used to simplify the analysis and Decouple the effects arising from different parts of the structure

Vivaldi Antenna

- Logarithmic Slotline Antenna
 - Wide bandwidth
 - Usual in lower frequency
 - Here applied for sub-THz.
- Slotline to Rect-Wg transition
 - Taper length
 - Taper rate

•

- Backshort thickness
- Backshort cut
- E-field in the slot is tapered out to the TE10 mode pattern
- Reflection and Transmission not acceptable
- Radiation too high

Patch Antenna Trans-Plane

- CPW to Rect-Wg transition
 - Patch height
 - Patch width
 - Post height, width
 - Dielectric thickness, width
 - Backshort length
- Broadband matching is not a trivial problem

CPW to Pad Transition

- CPW to Pad transition
 - CPW width and gap
 - Tip approach angle
 - Tip height
 - Dielectric thickness
 - Dielectric constant
 - Dielectric cut
- Transmission around
 -0.3 dB in 260-400 GHz

Combined System - Structure

Side View

- BCB substrate
 - Dielectric constant = 2.7
 - Dielectric height = 8 µm (typical)
- Microstrip line
 - Metal thickness = 2 µm
 - Width = 20 μ m (for 50 Ω line impedance)
 - Length = 1000 µm

Combined System - Radiation

- PPL mode between PCB back metal and waveguide lower wall
- Smaller height implies smaller electrical length -> better shorting -> reduced PPL mode excitation

Combined System with Bends

- Bend of radius 300 µm
- 1 dB improvement in total efficiency at 400 GHz

Combined System with Bend and Absorber

Institut

Drop in S21 at some frequencies

Conclusions

Probe example presented

Basic structure to study em effects

• Probe performance at sub-terahertz frequencies

- Strongly dependent on tip geometry
 - Tip height
 - Bend angle
- Strongly dependent on environment
 - Waveguide outer wall
 - Absorber
 - PCB back metallization
 - Adjacent structures on PCB

Deembedding algorithm must consider

- Radiation
- non-QTEM modes

Conclusions

- Detailed 3D EM modeling of actual probes can give insight
 - Product manufacturing includes a step-by-step development considering the em design rules.
 - Initial design rules from em field observation must be kept in the real manufactured probe.

