Electronic Calibration Units

Temperature Stability Tests

Rolf Judaschke, Karsten Kuhlmann

5th December 2013, SP, Borås, Sweden

This work was funded through the European Metrology Research Programme (EMRP) Project SIB62 'Metrology for New Electrical Measurement Quantities in High-frequency Circuits'.

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
Outline

- Equipment
- Preparation and setup
- Short-term stability measurements
- Infrared imaging of ECUs
- Conclusion
Measurement setup

Equipment

- VNA Rohde & Schwarz ZVA-50, 2-port, “metrology grade”
- Electronic calibration unit R&S ZV-Z52, 4-port, 10 MHz – 24 GHz
- Test port cable Gore NMD 2.4 mm to 3.5 mm female
- Adapter 3.5 mm male - male
- Temperature controlled chamber
- IR camera
Preparation and settings

- Ensure stable laboratory conditions (± 0.2 K)
- Ensure thermal equilibrium of both VNA and ECU (warm-up)
- Set IF bandwidth of VNA to a small value (10 Hz), no averaging
- Set VNA source power properly to enable linear receiver operation
- Avoid cable movement (where possible)
- Measure only a limited number of frequency points
- Check inner conductor recession and stability of both ECU and cable connectors
- In case of electro-mechanical ECU switches: perform several switching cycles
Temperature stability (TS) tests

- Investigate change of VNA error terms after connecting the ECU until thermal equilibrium is reached (TS1)

- Investigate change of DUT S-parameters immediately after performing an ECU-calibration of VNA (TS2)

- Investigate change of ECU states due to external temperature variations (TS3)
Stability measurements

Stability tests TS1

Test TS1a
- Install test port cable between ECU and VNA
- Choose a limited number of frequency points
- Let ECU reach thermal equilibrium
- Connect ECU and **immediately** start measuring ECU states repeatedly
- Calculate VNA error terms from ECU switching states raw data
- Calculate VNA error term drift (vector difference)

Test TS1b
- Repeat test while directly connecting ECU to VNA test port
Results test TS1a

Directivity drift

![Graph showing Directivity drift over time]

- Red line: 1 GHz
- Blue line: 13 GHz
- Green line: 24 GHz

Stability measurements

Workshop “Electronic Calibration Units” and European ANAMET meeting
Results test TS1a

Source match drift

![Graph showing source match drift over time with different frequencies (1 GHz, 13 GHz, 24 GHz).](image)
Results test TS1a

Tracking drift

![Graph showing tracking drift](image)
Results test TS1b

Directivity drift

![Graph showing Directivity drift](image)
Results test TS1b

Source match drift

![Graph showing source match drift over time for different frequencies (1 GHz, 13 GHz, and 24 GHz). The graph plots the deviation (ΔM) against time (s).]
Results test TS1b

Tracking drift

![Graph showing tracking drift for different frequencies (1 GHz, 13 GHz, 24 GHz) over time (in seconds)]
Stability measurements

Stability tests TS2

Test TS2
- Install test port cable between ECU and VNA
- Connect ECU, wait for thermal equilibrium
- Perform one-port calibration using ECU
- Disconnect ECU and **immediately** connect mechanical one-port standard (open, short, load)
- Immediately measure mechanical standard
- Calculate drift (vector difference)
Results test TS2

Short:

![Graph showing stability measurements over time for different frequencies.](image)
Results test TS2

Open:

![Graph showing stability measurements over time for different frequencies (1 GHz, 13 GHz, 24 GHz) over a time period of 60 seconds. The graph indicates the variation in stability (ΔS) with time. The data is shown in a logarithmic scale for the y-axis, ranging from 0 to 6 x 10^-3.]

Stability measurements

Workshop “Electronic Calibration Units” and European ANAMET meeting
Results test TS2

Load:

![Graph showing stability measurements](image)

Stability measurements

Workshop “Electronic Calibration Units” and European ANAMET meeting
Stability tests TS3

Test TS3
- Place ECU inside a temperature chamber
- Perform a one-port ECU calibration at laboratory temperature
- Increase chamber temperature stepwise up to 40°C
- Measure all ECU switching states after thermal equilibrium has been reached
- Calculate drift of ECU states (vector difference)
Results test TS3

“Short” switching state
Stability measurements

Results test TS3

“Open” switching state

[Graph showing time vs. temperature with different frequencies]
Results test TS3

“Load” switching state
Results test TS3

Drift of “Open” switching state vs. temperature

![Graph showing drift of open cable vs. temperature](image)
Infrared imaging of ECUs

- Infrared images give insight into the heat distribution (at ECU ports)
- Image sequence vs. time can investigate heat flow
Infrared imaging of ECUs
Conclusions

- Settling time of connection between **ECU and VNA cable**: approx. 1 min
 ECU and VNA test port: approx. 3 min

- For “optimal calibration”, ECU should **not** be operated under extreme temperature conditions

- To be investigated: ECU warm-up process **after** “ready” sign has been turned on

- To be investigated: change of ECU state due to heat treatment
This work was funded through the European Metrology Research Programme (EMRP) Project SIB62 'Metrology for New Electrical Measurement Quantities in High-frequency Circuits'. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.