

NPL () Nitienal Physical Laboratory UNIVERSITY OF LEE			
Data analysis (contd)			
Real component, Γ _R	Imaginary component, F I		
Experimental variance:	Experimental variance:		
$s^2(\Gamma_{R_i}) = \frac{1}{n-1} \sum_{k=1}^n (\Gamma_{R_k} - \overline{\Gamma_R})^2$	$s^{2}(\Gamma_{I_{i}}) = \frac{1}{n-1} \sum_{j=1}^{n} (\Gamma_{I_{j}} - \overline{\Gamma}_{I})^{2}$		
where $ar{arPsi}_{R}=rac{1}{n}\sum_{i=1}^{n}ar{arPsi}_{R_{i}}$	where $\overline{\varGamma}_{l} = \frac{1}{n} \sum_{i=1}^{n} \varGamma_{l_{i}}$		
Experimental standard deviation, $s(\Gamma_{R_i})$, is the positive square root of $s^2(\Gamma_{R_i})$ National Measurement System	Experimental standard deviation, $s(\Gamma_{l_i})$, is the positive square root of $s^2(\Gamma_{l_i})$		

NPL® National Physical Laboratory UNIVERSITY OF LEEDS				LEEDS		
	Observ	vations				
	Device	Nominal reflection coefficient, Γ	<i>s</i> (Г _R)	<i>s</i> (Γ _i)	s(Γ _R) & s(Γ _l)	
	Near- matched load	Γ ≈ 0	0.005	0.008	$s(\Gamma_l) \approx 2 \times s(\Gamma_R)$	
	Flush short	$ \Gamma \approx 1$ phase = ±180°	0.015	0.052	$s(\Gamma_l) \approx 3.5 \times s(\Gamma_R)$	
	Offset short	$ \Gamma \approx 1$ phase varies with frequency	0.01→0.10	0.05→0.10	$s(\Gamma_i)$ and $s(\Gamma_R)$ vary with frequency	
Natio Meas Syste	nal urement m					

NPL O		
Uncertainty considerations		
The generalized measurement model:		
y = f(x)		
Applied to our situation, becomes:		
$\Gamma_M = f(\Gamma_1, \Gamma_2, \Gamma_3)$		
The uncertainty can be represented as:		
$V_{\mathcal{Y}} = J \ V_{\mathcal{X}} J^T$		
National Measurement		

NPL $\bigotimes_{\text{Neisest Physical Leberstery}}$ $V_{\mathcal{Y}} = J \ V_{\mathcal{X}} \ J^T$			UNIVERSITY OF LEEDS		
Uncertainty considerations - contd					
$V_{y} = \begin{pmatrix} u^{2}(\Gamma_{M_{R}}) & u(\Gamma_{M_{R}}, \Gamma_{M_{I}}) \\ u(\Gamma_{M_{I}}, \Gamma_{M_{R}}) & u^{2}(\Gamma_{M_{I}}) \end{pmatrix}$					
$J = \begin{pmatrix} \partial f_R / \partial \Gamma_{1_R} \\ \partial f_I / \partial \Gamma_{1_R} \end{pmatrix}$	$\partial f_R / \partial \Gamma_{1_I}$ $\partial f_I / \partial \Gamma_{1_I}$	$\partial f_R / \partial \Gamma_{2_R}$ $\partial f_I / \partial \Gamma_{2_R}$	∂f _R /∂Γ ₂₁ ∂f _I /∂Γ ₂₁	$\partial f_R / \partial \Gamma_{3_R}$ $\partial f_I / \partial \Gamma_{3_R}$	$ \frac{\partial f_R / \partial \Gamma_{3_I}}{\partial f_I / \partial \Gamma_{3_I}} $
National Measurement System					

NPL O	$V_{\mathcal{Y}} = J \ V_{\mathcal{X}} J^T$	
Uncertainty	considerations - contd	
$V_{x} = \begin{pmatrix} u^{2}(\Gamma_{1_{R}}) \\ u(\Gamma_{1_{I}}, \Gamma_{1_{R}}) \\ u(\Gamma_{2_{R}}, \Gamma_{1_{R}}) \\ u(\Gamma_{2_{I}}, \Gamma_{1_{R}}) \\ u(\Gamma_{3_{R}}, \Gamma_{1_{R}}) \\ u(\Gamma_{3_{I}}, \Gamma_{1_{R}}) \end{pmatrix}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{ll} u(\Gamma_{1_{R}},\Gamma_{3_{R}}) & u(\Gamma_{1_{R}},\Gamma_{3_{I}}) \\ u(\Gamma_{1_{I}},\Gamma_{3_{R}}) & u(\Gamma_{1_{I}},\Gamma_{3_{I}}) \\ u(\Gamma_{2_{R}},\Gamma_{3_{R}}) & u(\Gamma_{2_{R}},\Gamma_{3_{I}}) \\ u(\Gamma_{2_{I}},\Gamma_{3_{R}}) & u(\Gamma_{2_{I}},\Gamma_{3_{I}}) \\ u^{2}(\Gamma_{3_{R}}) & u(\Gamma_{3_{R}},\Gamma_{3_{I}}) \\ u(\Gamma_{3_{I}},\Gamma_{3_{R}}) & u^{2}(\Gamma_{3_{I}}) \end{array}$
	$V_{x} = \begin{pmatrix} V_{\Gamma_{1}} & 0 & 0 \\ 0 & V_{\Gamma_{2}} & 0 \\ 0 & 0 & V_{\Gamma_{3}} \end{pmatrix}$	
where National Measurement System	$V_{\Gamma_1} = \begin{pmatrix} u^2(\Gamma_{1_R}) & u(\Gamma_{1_R}, \Gamma_{1_I}) \\ u(\Gamma_{1_I}, \Gamma_{1_R}) & u^2(\Gamma_{1_I}) \end{pmatrix}$	etc

