

within EURAMET and the European Union

Introduction to HIGHGAS and Aims of the Workshop

Paul Brewer

LNE Paris 13TH November 2014

LNE

A brief history of climate change

1824: Joseph Fourier describes the Earth's natural "greenhouse effect"

1861: John Tyndall shows that water vapour and other gases create the greenhouse effect

1886: Karl Benz unveils the Motorwagen

1896: Svante Arrhenius concludes that industrial-age coal burning will enhance the natural greenhouse effect

1900: Knut Angstrom discovers that even at the tiny concentrations found in the atmosphere, CO₂ strongly absorbs parts of the infrared spectrum

18

within ELIRAMET and the European Union **1938**: Guy Callendar shows that temperatures and CO₂ concentrations had risen over the previous century, widely dismissed by meteorologists

1955: Gilbert Plass - doubling CO₂ would increase temperatures by 3-4 °C 1975: Wallace Broecker - "global warming" in the public domain

1987: Montreal Protocol agreed

1988: IPCC formed

1990: IPCC - temperatures risen by 0.3 - 0.6 °C over the last century **1992**: Governments agree the United Framework Convention on Climate Change 1995: IPCC - "a discernible human influence" on the Earth's climate

1997: Kyoto Protocol agreed

2001: IPCC - "new and stronger evidence" that humanity's emissions of greenhouse gases are the main cause of the warming seen in the second half of the 20TH Century **2006:** Stern Review - climate change could damage global GDP by up to 20% if left unchecked, but curbing it would cost about 1% of global GDP

2007: The IPCC: more than 90% likely that humanity's emissions of greenhouse gases are responsible for modern-day climate change

2012: Arctic sea ice reaches a min of 3.41 million km² a record for lowest summer cover

1800		1900		2000
human population	carbon emissions from fossil fu	el burning and industry		
1800: 1 billion 1930: 2 billion 1960: 3 billion 1975: 4 billion 1987: 5 billion 1999: 6 billion 2011: 7 billion	1927: 1 billion tonnes per year 1986: 6 billion tonnes per year 2006: 8 billion tonnes per year 1895: CO ₂ 290 ppm 1958: CO ₂ 315 ppm 2008: CO ₂ 380 ppm 2013: CO ₂ > 400 ppm	1958: Charles David Keeling begins systematic measurements of atmospheric CO ₂ at Mauna Loa in Hawaii and in Antarctica	1998: Strong El Nino conditions combine with global warming to produce the warmest year on record	2013: IPCC - scientists 95% certain humans are "dominant cause" of global warming since 1950s

Rationale

- The measurement of greenhouse gases is pivotal to understanding changes in the Earth's climate
- National and international legislation is aimed at reducing greenhouse gas emissions which requires long-term measurements based on stable standards
- There is a significant requirement for **SI traceability**, as it provides the possibility for **more than one source** and will overcome supply issues, provides **coherence** and confidence through **international comparability**

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

- £3.5 M project
- 36 months (June 2014 May 2017)
- Ten NMI partners: NPL, VSL, LNE, PTB, MIKES, DFM, FMI, CMI, METAS, TUBITAK
- Two Researcher Excellent Grants:

Integral REG: Eidgenössische Materialprüfungs-und Forschungsanstalt (EMPA) Stage 3 REG: Radbound University (RU)

• Three technical work packages

Aims of the workshop

Objectives:

- Engage stakeholders and outline JRP objectives
- Obtain input to steer the targets of the JRP
- Make contacts to represent the different communities
- Understand stakeholder requirements
- Discuss training and dissemination of outputs standardisation • committees speciality gas atmospheric industry monitoring **HIGHGAS** instrument **NMIs** manufacturers other

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Beyond the state of the art

vithin EURAMET and the European Union

Disseminate reference standards: stable SI traceable coherent internationally comparable

- Passivation chemistry to guarantee stability and accuracy over the timescales required
- Novel methods to quantify target components in the matrix gas
- Address systematic biases from instrumentation
- Portable calibration devices for dissemination to the field and reactive components
- Optical transfer standards based on laser absorption spectroscopy to validate field measurements
- Ratios of stable isotopologues to trace origin
- Accurate atomic weights for calculating amount fractions of gas standards

WP1: High accuracy primary reference gas mixtures

- Static reference standards (CO₂, CH₄, N₂O and CO) at unprecedented levels of accuracy and stability
- Investigation of systematic biases introduced from instrumentation at monitoring stations
- Assessment of the comparability of traceable reference standards to existing standards and scales

Dynamic methods for trace amount fractions and dissemination to the field

- High accuracy dynamic reference standards (CO and N₂O) for field calibration and validation of static reference standards
- High accuracy dynamic standards for F-gases (sub nmol/mol)
- Field dissemination and comparison to global scales for F-gases

WP3:

Spectroscopic methods for isotopic

- Needs and potential impact of spectrometric gas metrology
- Complementary spectroscopy for high accuracy CO and CO₂ reference standards
- Isotope ratio measurements based on optical spectroscopy to support standards and determine origin

Impact

EMRP European Metrology Research Programme

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

- Maintain stable values of greenhouse gases for analysis of trends in the atmosphere
- Underpin future data sets and the global capability for interpreting trends for improving our understanding of the influence of these components on climate change, air quality and human health
- Supply stable and accurate global data for global chemistry modelling
- Develop accurate benchmarks for evaluating the "state of the atmosphere"
- Transparent basis for developing and implementing policies for the control of anthropogenic emissions
- Defensible compliance with legislation (Kyoto Protocol, WMO/GAW programme, 2008/50/EC, 2001/81/EC, 2000/76/EC) and improvements in quality of life

Training and dissemination

in EURAMET and the European Union

Develop and present technical training for end-users and stakeholders via 3 interactive webinars:

- 1 Preparation of traceable, high accuracy static reference standards
- 2 Novel dynamic systems to disseminate traceability
- 3 Spectroscopic methods for transfer standards and measuring isotopic composition
- Webinar 1 will cover outputs from WP1 (NPL and VSL)
- Webinar 2 will cover outputs from WP2 (LNE)
- Webinar 3 will cover outputs from WP3 (PTB)

Workshop

vithin EURAMET and the European Union

The EMRP is jointly funded by the EMRP participating countries

HIGHGAS

1 day workshop planned for M36 on new reference standards for high impact greenhouse gases

- To follow the final meeting
- To be hosted by NPL
- Involve stakeholders and JRP partners

JRP website

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Website includes:

- Information on the JRP
- Information on the JRP partners
- News and events
- Publications
- Results and presentations

HIGHGAS: Metrology for High Impact Greenhouse Gases

Home	The Project	Workpackages	Partners	News & Events	Publications	SharePoint	Contact
Home > The I	Project						EMRP European Metrology Research Programme Programme of EURAMET
)					The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union		
Addressing the objectives of the EMRP				The research within this EURAMET joint			
	-	-					research project receives funding from the
							European Community's Seventh Framework
Improve data quality for policy making and regulation and underpin other environmental research initiatives					Programme, ERA-NET Plus, under Grant		
 Addres 	s a global metrolo	gical challenge for cl	, imate control r	elated to atmospheric	parameters		Agreement No. 217257.
Contrib	ute to a Europea	n NMI/DI network linke	ed with ICOS a	nd the WMO-GAW pr	ogramme		
 Ensure 	integration and e	efficiency to develop t	he landscape a	and capability of NMIs	across the EU		
Develo	- ping metrology ca	apacity and synergy to	o meet stakeho	lder requirements an	d create a cost-effe	ective approach	
Otimula	to innovation thro	in the second	NINTER AND ADDRESS			nathan	

- Stimulate innovation through a partnership of NMIs applying relevant metrological expertise and strengther collaboration
- · Outside researchers (major stakeholders, EMPA (JRP REG) and collaborators)

Impact

- · Maintain stable values of greenhouse gases for analysis of trends in the atmosphere
- Underpin future data sets and the global capability for interpreting trends for improving our understanding of the influence of these components on climate change, air quality and human health
- · Supply stable and accurate global data for global chemistry modelling
- Develop accurate benchmarks for evaluating the "state of the atmosphere"
- Transparent basis for developing and implementing policies for the control of anthropogenic emissions
- Defensible compliance with legislation (Kyoto Protocol, WMO/GAW programme, 2008/50/EC, 2001/81/EC, 2000/76/EC) and improvements in quality of life

http://projects.npl.co.uk/highgas/

Project meetings

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Month	Date	Meeting	Venue	Required	
1	Jun-14	kick off meeting	NPL	All	
5	Nov-14	stakeholder meeting	LNE	WP leaders	
6	Dec-14	teleconference	-	All	
9	Feb-15	WP leader meeting	EURAMET	WP leaders	
12	May-15	teleconference	-	All	
18	Nov-15	2 nd project meeting	VSL/PTB	All	
21	Feb-16	WP leader meeting	EURAMET	WP leaders	
23	Apr-16	teleconference	-	All	
28	Sep-16	3 rd project meeting	PTB/VSL	All	
33	Feb-17	WP leader meeting	EURAMET	WP leaders	
36	May-17	final project meeting	NPL	All	
36	May-17	stakeholder workshop	NPL	All	

Stakeholders to be invited to second day of M18 and M28 meetings

Discussion Session

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

How JRP will meet stakeholder requirements

- What are the main stakeholder requirements?
- What are the most important aspects of the project?
- What do you see as the most significant challenges in HIGHGAS?
- What are the most important emerging F-gases where new requirements exist?
- Is there interest to be involved in comparison exercises?

Training and future stakeholder engagement

- How best can we disseminate outputs from the project?
- What content would be beneficial in training modules?
- Additional requirements outside the project for future work?
- Future involvement in the HIGHGAS project?