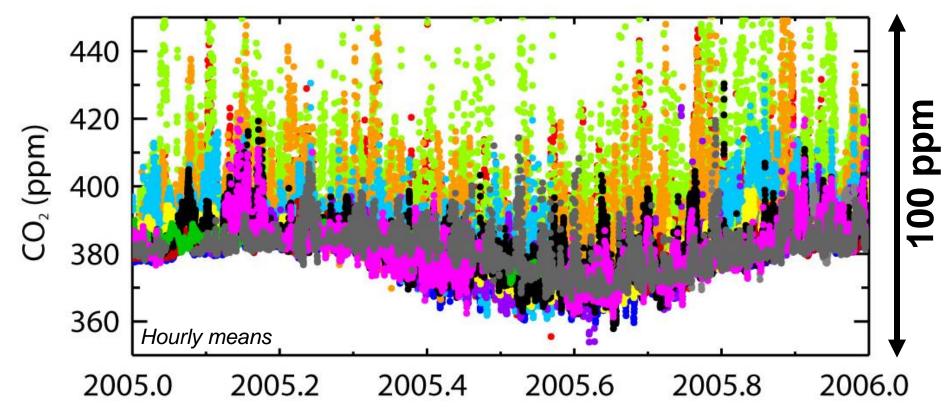


1st HIGHGAS stakeholder workshop 13. November 2014, LNE/Paris

High precision monitoring of greenhouses gases in Europe

ICOS


NTEGRATED CARBON DBSERVATION CYSTEM

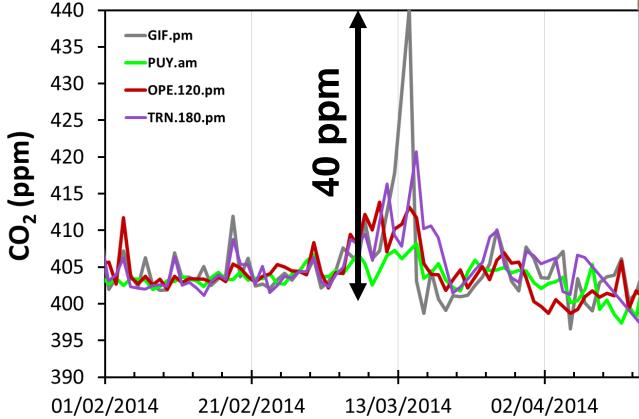
Michel Ramonet (LSCE, CEA/CNRS/UVSQ) Daniel Rzesanke (MPI-BGC)

One year of in-situ measurements in Europe

Cabauw, Netherlands Heidelberg, Germany Hegyhatsal, Hungary Lampedusa, Italy Plateau Rosa, Italy Zeppelin, Spitsbergen Mahe Head, Ireland Monte Cimone, Italy Gif/Yvette, France Kasprowy, Poland Pallas, Finland Schauinsland, Germany Puy de Dôme, France

Signals at different time scale

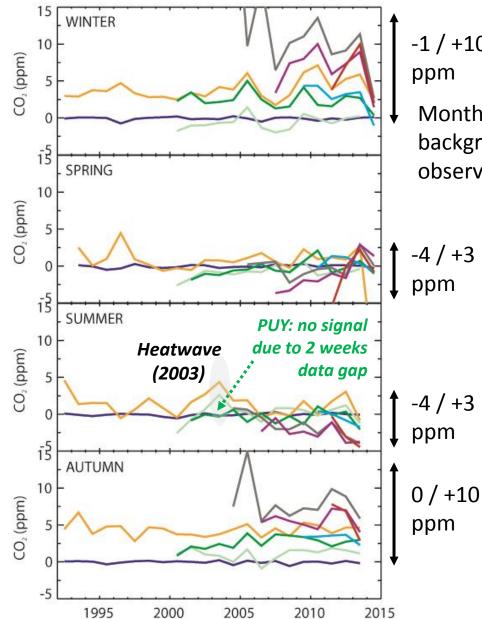
Spatial representativeness differ from site to site


Each site in charge of its own instrument, protocols (calibration, QA/QC) and data processing

Dedicated comparison program (Round-Robin)

Synoptic CO₂ variability

Pollution event over Northern France due to stratification of air masses



Continuous measurements enable detection of short term variabilities (not possible vith flask sampling programs)

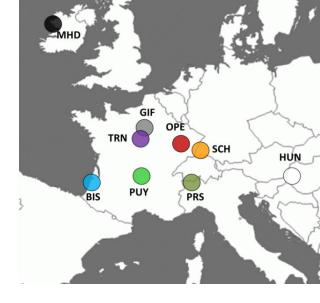
Intermediate precision (≈1 ppm) would be enough to characterize such signals

Seasonal CO₂ gradients

Using mace Head as a reference

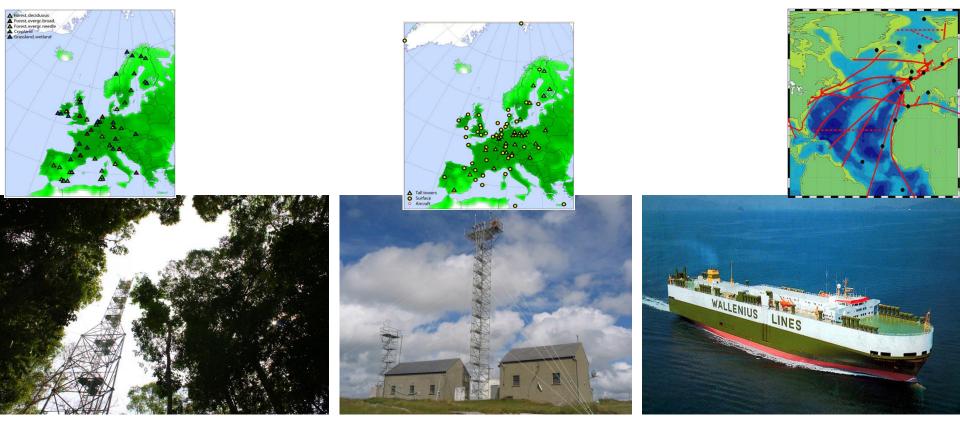
-1/+10

Monthly means of background selected observations


-4 / +3

Very high precision and continuous dataset needed to characterize trend and interannual gradients over Europe

WMO Recommendations


Table 1 - Recommended compatibility of measurements of components discussed

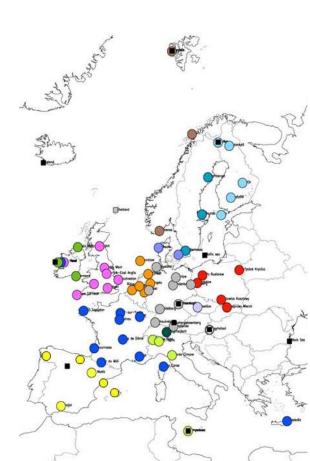
Componen	t Compatibility goal range	range in the unpolluted troposphere		
CO ₂	± 0.1 ppm (± 0.05 ppm in the southern hemis	phere) 360 430 ppm		
[] ¹³ C-CO ₂	± 0.01 ‰	-7.59 ‰ vs. VPDB		
[] ¹⁸ O-CO ₂	± 0.05 ‰	-2 +2‰ vs. VPDB		
$\mathbb{I}^{13}C-CH_4$	± 0.02 ‰	-8020‰ vs. VPDB		
0D – CH4	±1‰	-400 +0‰ vs. VSMOW		
[] ¹⁴ C-CO ₂	±1‰	0 70‰		
O2/N2	± 2 per meg	-250550 per meg (vs. SIO scale)		
CH₄	± 2 ppb	1700 2100 ppb		
CO	± 2 ppb	30 300 ppb		
N ₂ O	± 0.1 ppb	320 335 ppb		
H ₂	± 2 ppb	450 600 ppb		
SF ₆	± 0.02 ppt	6 10 ppt		

A European research infrastructure to monitor greenhouse gas emissions

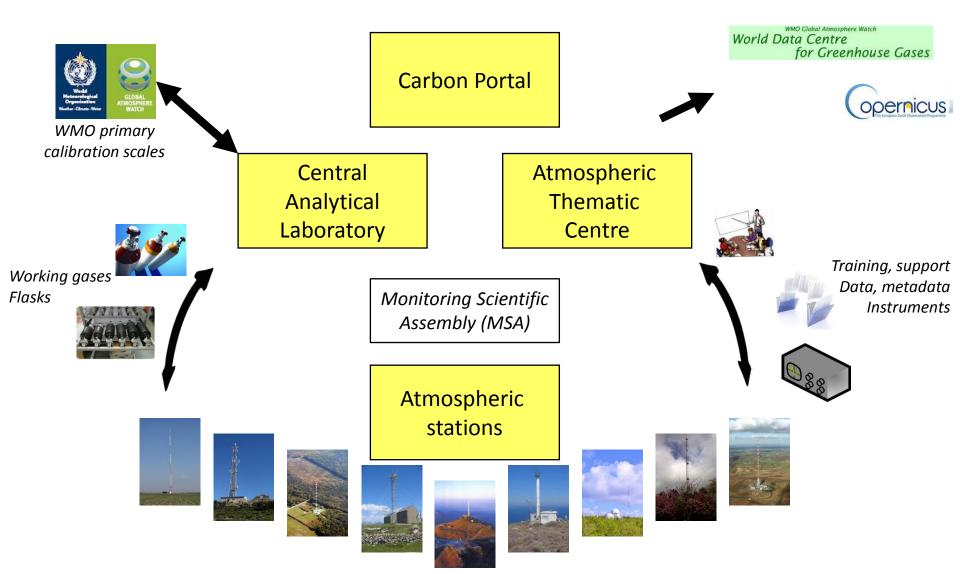
Ecosystems

Atmosphere

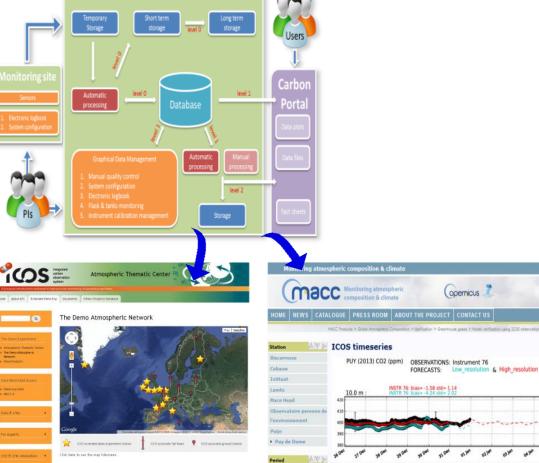
First HIGHGAS Stakeholder Workshop 13 November 2014 - LNE, Paris



A European research infrastructure to monitor greenhouse gas emissions

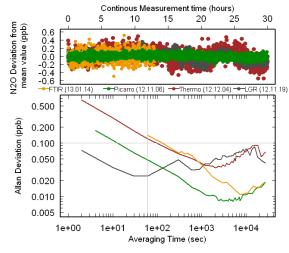

ICOS Strategy for the atmospheric component:

- Standardized measurement systems and protocols
- Centralized data evaluation and quality control
- Calibration of working standards in Central Analytical Lab
- Analysis of additional tracers at stations and in the CAL


Organization of the atmospheric component

Atmospheric Thematic Center (ATC)

Data Center

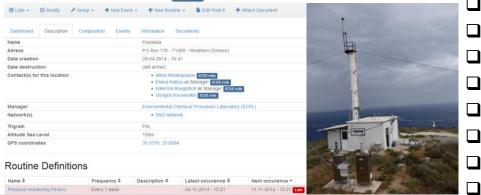

Near real time (h+24) data processing and diffusion

Cez UNIVERSITÉ DE VERSAILLES

ICOS Atmospheric Metrology Lab

Allan Variance Assesment: TGT_D893474

ONP

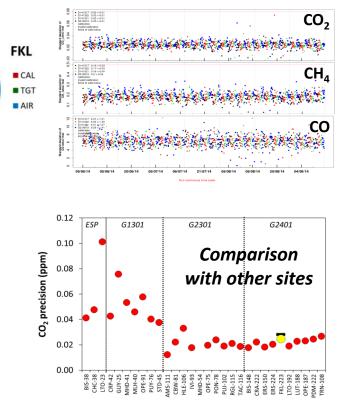

Dataset provision for MACC-II

COPERNICUS core service

Technology survey & sensors/protocols evaluation

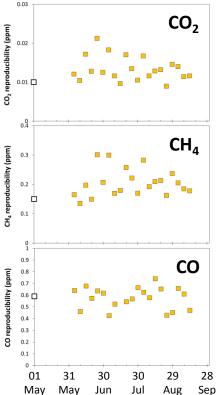
High traceability of measurements and uncertainties

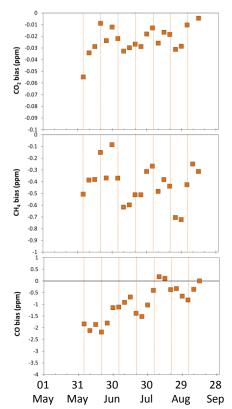
Atmospheric Station : Finokalia


- □ ICOS AS specifications (in line with WMO recom.)
- Metadata on site and station set-up
 - **1** Station/instrument configuration for data processing
- Near real time data transmission
 - Calibration with 3-4 calibrated gases (WMO scale)
- Precision / reproducibility using two target gases
- □ Weekly flask sampling (*class 1 station*)
 - Travelling instrument and target gases

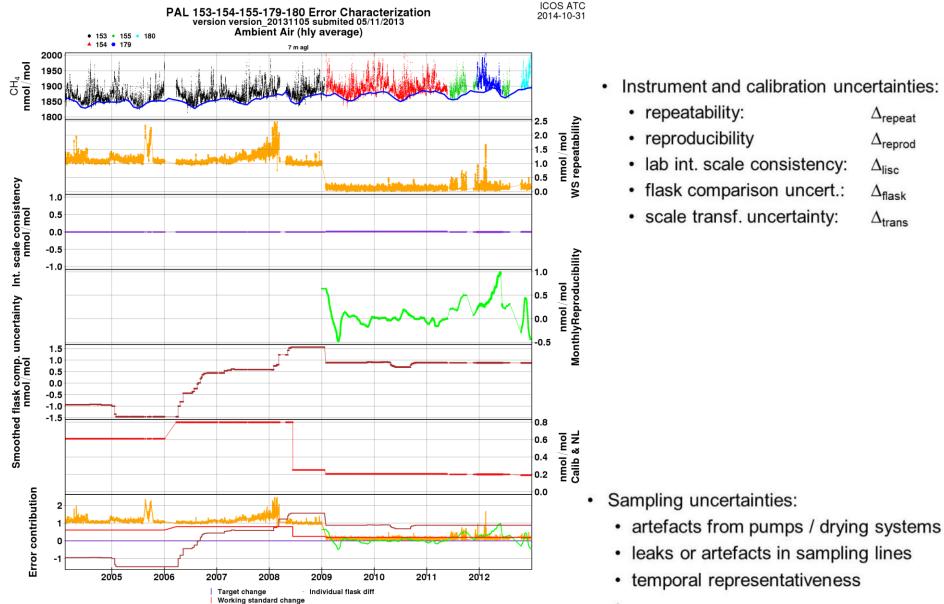
Data coverage

1.5 4.6

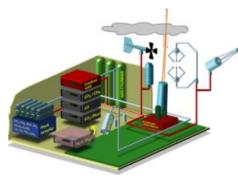

93.3



Reproducibility



Uncertainty assessment



٠

- Δ_{repeat}
- Δ_{reprod}
- · lab int. scale consistency: Δ_{lisc}
- flask comparison uncert.: Δ_{flask}
- · scale transf. uncertainty: Δ_{trans}

Observed parameters: greenhouse gases and tracers for source/sink apportionment



	Continuous	Sampling	Meteorology		
Class 1 Mandatory parameters	 CO₂, CH₄, CO : at each sampling height 	 CO₂, CH₄, N₂O, SF₆, CO, H₂,¹³C and ¹⁸O in CO₂: weekly sampled at highest sampling height 14C (radiocarbon integrated samples): at highest sampling height 	 Air temperature, relative humidity, wind direction, wind speed: at highest and lowest sampling height* Atmospheric Pressure Planetary Boundary Layer Height** 	ICOS	INTEGRATED CARBON OBSERVATION SYSTEM
Class 2 Mandatory parameters	• CO ₂ , CH ₄ : at each sampling height	height	 Air temperature, relative humidity, wind direction, wind speed: at highest and lowest sampling height* Atmospheric Pressure 		
Recommended parameters***	 ²²²Rn, N₂O, O₂/N₂ ratio CO for Class 2 stations 	 CH₄ stable isotopes, O₂/N₂ ratio for Class 1 stations: weekly sampled at highest sampling height 	• CO ₂ : at o sampling height		

Atmospheric temperature and relative humidity recommended at all sampling heights

** Only required for continental stations.

Fossil fuel contribution using ¹⁴CO₂ measurements

DS INTEGRATED CARBON OBSERVATION SYSTEM

A European research infrastructure to monitor greenhouse gas emissions

- Development of dense monitoring network in Europe with standardized protocols and very high traceability
- □ Near-real time access to the measurements from all stations
- □ Improvement of our QA/QC strategy and harmonisation for better estimation of uncertainties
- Dedicated central facilities for data processing, protocols evaluation, technology survey, sample analysis and preparation of reference material (linked to WMO/GAW)
- □ Multi tracers strategy for source/sink apportionment, and model validation
- ICOS will provide background observations, to be complemented with regional/urban networks (ex. CarboCount-City around Paris)
- □ Collaboration with NMIs is expected (calibration , metrology, QA/QC, uncertainties, ...)

INTEGRATED CARBON OBSERVATION SYSTEM

Bundesministerium für Bildung und Forschung

(dedicated) Preparation of Standard Gases for the ICOS-network

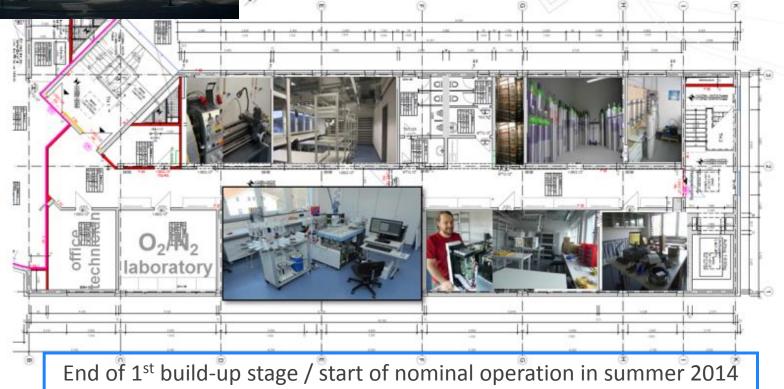
Daniel Rzesanke, Markus Eritt, Adam Janoschka, Rico Hengst, Christian Lütz, Michael Künast, Bert Steinberg, Michael Hielscher, Maria Büttner and Armin Jordan

Central Analytical Laboratory

Max-Planck Institut für Biogeochemie, Jena

1st HIGHGAS stakeholder workshop, 13. November 2014, LNE/Paris

The Flask and Calibration Lab in Jena


••• Central

Analytical Laboratory

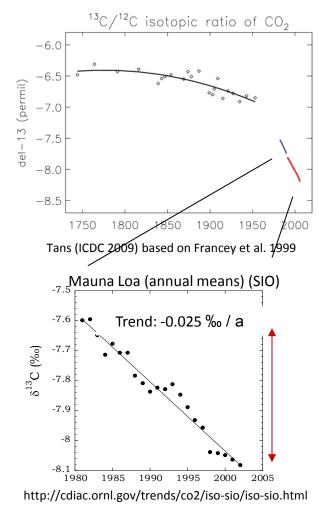
ICOS

- Flask and tank conditioning
- Standard Gas preparation
- Calibration and analyses of cylinders
- Analyses of flask samples

(for trace gases and comp. of stab. isotopes)

Function of a Central Laboratory for the atmospheric observations in ICOS

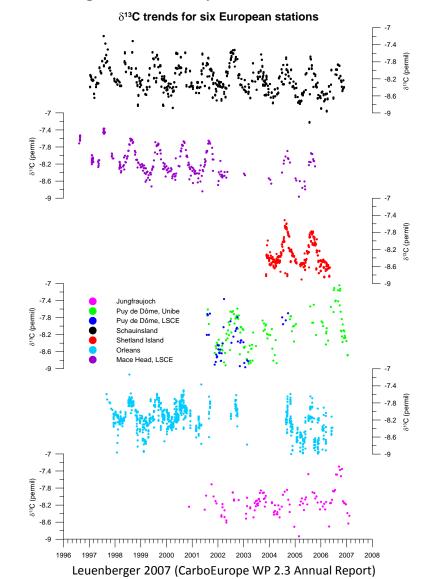
Challenge: provide unambiguous data of small atmospheric signals


- trends of atmospheric composition
- geographic gradient

aboratory

- changes in trends / gradients
- \rightarrow high requirements for compatibility
 - → network-wide use of only one reference standard or scale (primary standard) (one institution being responsible for this standard)

Scientific requirements for data compatibility: $\delta^{13}C_{CO2}$

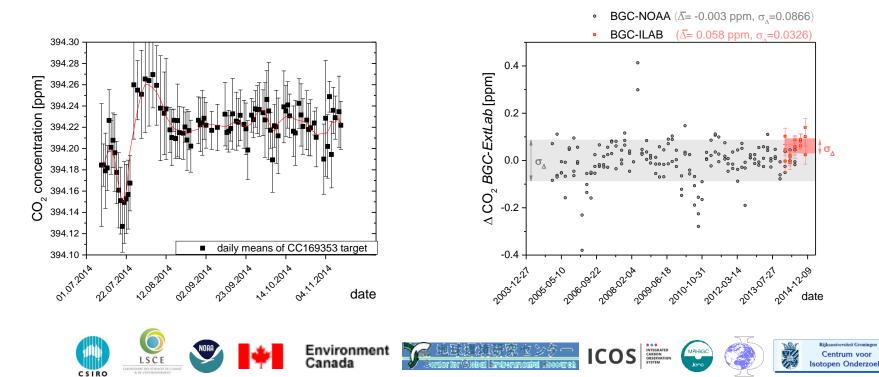

Trends are small ...

...defining the desired compatibility goal of $\delta^{13}\text{C-}$ CO $_2$ of $\,\pm\,$ 0.01 ‰ for atmospheric CO $_2$

IAEA-TECDOC-825, 1995

Past measurements from various laboratories docum shortcomings to meet requirements

Data Quality Assurance of ICOS FCL lab


Function to assure network conformance to primary scale

 \rightarrow link to WMO scale by large set of WMO reference standards

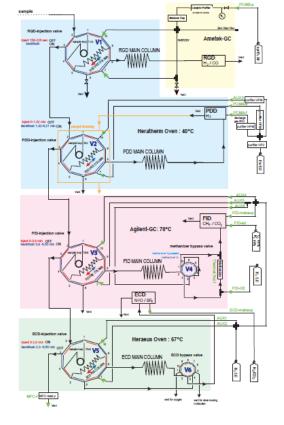
Quality Control Activities

internal: target gas analysis – cross instrument check

external: various comparison activities

Preparation

- 1. Conditioning (evacuation and heating), prefilling and storage with pressurized dried air
- 2. Filling
- 3. Adjustment of composition
- Specified crit. hardware (tanks, valves)
- "Same procedure as every cylinder"


Required capacity (filling and (re-)calibration): ~ few 100/y

- (GC-system, PDD, FID, ECD, RGA)
- CRDS (Picarro G2301)
- FTIR (Ecotech/Bruker)
- (IRMS Thermo Fisher MAT253)
- (QP-MS Vacom GAPAS)
- New N₂O + CO spectroscopic analyser

••• Central

Analytical Laboratory

ICOS

Summary

- (1) Measurements shall fulfil or exceed WMO-criteria for precision and accuracy
- (2) Long term data consistency prevails over accuracy
- (3) ICOS references to WMO/GAW-scales for Greenhouse Gas Measurements (held by Central Calibration Laboratories (CCLs))
- (4) Cooperation with Metrology Institutes highly welcome (e.g. round robin comparisons)
- (5) Future plan: transfer of calibration functions currently carried out by MPI-BGC
 (WMO-CCL for H₂ and stable isotopes in CO₂, standardization of CH₄ stable isotopes)