Accuracy requirements for interchangeability of gas standards for greenhouse gas and precursor atmospheric monitoring

R.I. Wielgosz

HIGHGAS Stakeholder Workshop, 13 November 2014, Paris

NPL Management Ltd - Internal

METPS

Bureau International des Poids et Mesures (BIPM)

The International Bureau of Weights and Measures

 Intergovernmental organization with 56 Member States and 41 Associate States/economies, Established in 1875 to:

... ensure and promote the global comparability of measurements, including providing a coherent international system of units for:

- Scientific discovery and innovation,
- Industrial manufacturing and international trade,
- Sustaining the quality of life and the global environment.

5 scientific departments:

- Chemistry
- Electricity
- Ionizing Radiation
- Mass
- Time

Bureau ↓ International des ↓ Poids et ↓ Mesures

CIPM Mutual Recognition Arrangement

3

International Gas Standard Comparisons coordinated by the BIPM Chemistry Department

Comparison	Description	Nominal mole fraction	Year
CCQM-P28	Ozone (ground-level)	80 nmol/mol; 400 nmol/mol	2003
CCQM-P73	Nitrogen Monoxide	50 µmol/mol	2006
BIPM.QM-K1	Ozone (ground-level)	80 nmol/mol; 400 nmol/mol	2007
CCQM-K74	Nitrogen Dioxide	10 µmol/mol	2009
CCQM-P110.B1 CCQM-P110.B2	Nitrogen Dioxide : Spectroscopic Studies	10 µmol/mol	2009
CCQM-K82	Methane	2000 nmol/mol	2012
ССQМ-К90	Formaldehyde	2000 nmol/mol	2014
CCQM-K120.a	Carbon dioxide	380 µmol/mol – 480 µmol/mol	2015
CCQM-K120.b	Carbon dioxide	380 μmol/mol – 800 μmol/mol	2015
CCQM-K68.2018	Nitrous oxide	350 nmol/mol	2018

Essential Climate Variables

: Essential Climate Variables that are both currently feasible for global implementation and have a high impact on UNFCCC requirements

Domain	Essential Climate Variables				
	Surface: ⁸	Air temperature, Wind speed and direction, Water vapour, Pressur Precipitation, Surface radiation budget.			
Atmospheric (over land, sea and ice)	Upper-air: ⁹	Temperature, Wind speed and direction, Water vapour, Cloud properties, Earth radiation budget (including solar irradiance).			
	Composition:	Carbon dioxide, Methane, and other long-lived greenhouse gases ¹⁰ , Ozone and Aerosol, supported by their precursors ¹¹			
	Surface: ¹²	Sea-surface temperature, Sea-surface salinity, Sea level, Sea state.			
Oceanic	Sub-surface:	pressure, Ocean acidity, Phytoplankton. Temperature, Salinity, Current, Nutrients, Carbon dioxide partial pressure, Ocean acidity, Oxygen, Tracers.			
Terrestrial	River discharge, Water use, Groundwater, Lakes, Snow cover, Glaciers and ice caps, Ice sheets, Permafrost, Albedo, Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (FAPAR), Leaf area index (LAI), Above- ground biomass, Soil carbon, Fire disturbance, Soil moisture.				

⁸ Including measurements at standardized, but globally varying heights in close proximity to the surface. 9 Up to the stratopause.

Bureau International des Poids et Mesures

¹⁰ Including N₂0, CFCs, HCFCs, HFCs, SF₆ and PFCs.

¹¹ In particular NO₂, SO₂, HCHO and CO.

¹² Including measurements within the surface mixed layer, usually within the upper 15 m.

Target uncertainties for primary standards

Component	Nominal Mole fraction	Primary Standard: target standard uncertainty
CO ₂	400 μmol/mol	0.025 μmol/mol
CH ₄	2000 nmol/mol	0.5 nmol/mol
N ₂ O	350 nmol/mol	0.025 nmol/mol

Based on primary standard contributing to less than 5% of measurement uncertainty for monitoring based on most stringent data compatibility requirements

International comparison of methane in air standards (2012)

Aims/Deliverables:

Bureau

Demonstrate the degree of equivalence of national methane in air gas standards in support of green house gas monitoring (CCQM-K82, CH₄ in air)

Analysis made by cavity ring down spectroscopy and gas chromatography-flame ionization detector

Accounting for potential biases in CRDS measurements

Uncertainty component included in BIPM measurement Results

Pressure broadening:

H. Nara; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W. "Effect of air composition $(N_2, O_2, Ar, and H_2O)$ on CO_2 and CH_4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy". Atmos. Meas. Tech. 2012. 5. 2689-2701.

CRDS measurements and matrix gas composition

Target mole fractions:

1800±10 nmol/mol and 2200±10 nmol/mol.

Matrix composition

To minimize pressure broadening effects

		2
Component in Air	Minimum mole fraction permitted within submitted cylinder	Maximum mole fraction permitted within submitted cylinder
Nitrogen	0.77849 mol/mol	0.78317 mol/mol
Oxygen	0.20776 mol/mol	0.21111 mol/mol
Argon	8.865 mmol/mol	9.799 mmol/mol
Carbon Dioxide	360 µmol/mol	400 µmol/mol

Comparison of GC-GID and CRDS methods for methane in air

Validation of BIPM's Measurements facility with NIST standards

Improvements in global compatibility of methane in air standards

Development for future improvements in CH₄ in air standards

Accurate measurements of CH₄ in balance gas at 1 nmol/mol levels with u(x) < 0.1 nmol/mol required

CCQM-K82 results accounting potential isotope ratio variation in CH₄

Bureau International des Poids et Mesures

CCQM-K82 results including uncertainty component for potential isotope ratio variation in CH₄

Pure methane from natural gas: $-(43\pm7)$ ‰ for δ^{13} C (VPDB);

 $-(185\pm20)$ ‰ for δ D (VSMOW

Bias in the CRDS: +0.34 nmol/mol and -0.38 nmol/mol;

Uncertainty component $u_{\delta} = 0.21 \text{ nmol/mol}$

Bureau International des Poids et Mesures

Preparation for CCQM-K120 (2015)

Coordinated by: BIPM/NIST

Agreed comparison (November 2013):

Comparison of NMI capabilities

CCQM-K120.a

 CO_2 in air (380 µmol/mol to 480 µmol/mol)

Matrix : Scrubbed real air within 0.1% of atmospheric balance gases

CCQM-K120.b

 CO_2 in air (380 µmol/mol to 800 µmol/mol)

Matrix : Air composition within 1% of atmospheric balance gases

Previous comparison: CCQM-K52 (2006)

Coordinated by: VSL

Lab i	Cylinder	x ₁ / (μmol/mol)	U _{Lab /} / (µmol/mol)	k,	x _{/ref} / (μmol/mol)	<i>u</i> _{/ ref} / (μmol/mol)
NMi-VSL	D240036	364.13	0.36	2	364.30	0.20
INMETRO	D752038	364.0	3.6	2	363.18	0.20
NMIA	D751922	363.09	0.70	2.18	363.31	0.20
CEM	D751928	363.38	0.73	2	363.67	0.20
NPL	D751947	364.36	0.44	2	364.15	0.20
SMU	D751961	364.6	1.2	2	363.86	0.20
NMIJ	D751944	364.08	0.48	2	363.88	0.20
CERI	D751923	363.42	0.61	2	363.89	0.20
CENAM	D751924	361.6	2.2	2	363.91	0.20
NMISA	D751918	364.9	3.883	2	364.00	0.20
NIST	D751954	363.72	0.34	2	364.03	0.20
INRIM	D751935	364.62	0.90	2	364.05	0.20
NPLI	D751950	358.1	13.6	2	364.14	0.20
BAM	D751942	363.5	2.9	2	363.72	0.20
VNIIM	D751937	364.1	0.7	2	364.19	0.20
LNE	D750235	363.63	1.15	2	364.21	0.20
NIM	D751943	364.6	1.1	2	364.34	0.20
KRISS*	D751977	363.20	0.06	2	363.12	0.20

Results show good agreement, but...

CCQM-K52 ence for CO₂ in synthetic air at nominal value 360 µmol/mol				
T				

Uncertainties on all standards > DQO for ambient monitoring community

Measuring mole fractions of CO₂ isotopologues

NPL Management Ltd - Internal

Nesures

Preparation for CCQM-K120 (2015)

Coordinated by: BIPM/NIST BIPM comparison facilities

Isotope ratio measurements for corrections to CO_2 concentration measurements required at the \pm 1 ‰ level

- Optimized volumes and wall thicknesses for pressure measurements
- Automated system for cryogens
- Residual Gas Analyser for monitoring efficiency of cryogenic steps

Preparation for CCQM-K120 (2015) BIPM comparison facilities

Coordinated by: BIPM/NIST

Manometric System for CO₂

$$x_{\rm CO2} = \frac{P_{\rm CO2}}{P_{\rm air}} \frac{V_{\rm a}}{V_{\rm tot}} \left(\frac{\frac{T_{\rm air}}{T_{\rm CO2}}}{\frac{1 + \frac{B_{\rm air}(T_{\rm air})P_{\rm air}}{RT_{\rm air}}}{1 + \frac{B_{\rm CO2}(T_{\rm CO2})P_{\rm CO2}}{RT_{\rm CO2}}} \right)$$

Preparation of Validation Standards (Mole fraction)

CO ₂ Mole	CH ₄ Mole	N ₂ O mole	Balance Gas*
Fraction	fraction	fraction	
380 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
400 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
425 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
450 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
500 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
650 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
800 ppm	1850 ppb	< 1ppb	Cryogenic Ultra-Pure Air
380 ppm	1850 ppb	325 ppb	Cryogenic Ultra-Pure Air
400 ppm	1850 ppb	325 ppb	Cryogenic Ultra-Pure Air
425 ppm	1850 ppb	325 ppb	Cryogenic Ultra-Pure Air

Standards prepared: October 2013; Value assigned by NIST July 2014;

Subset sent to MPI BGC JENA for isotope ratio measurement (August 2014)

Validation standards with a range of isotopic compositions

Selected pure CO₂ sources to span δ^{13} C in set of gravimetric standards

IAEA-BIPM Collaboration IAEA Workshop on Stable Isotopes (3-5 Sept 2014)

Comparisons of CO₂ standards with FTIR

J.Viallon, E. Flores, F. Idrees, P.Moussay (BIPM)

F. Guenther, L. Gameson and G. Rhoderick (NIST)

M.Doval Miñarro (NPL)

S. Assonov and M. Groening (IAEA)

W. Brand (MPI-JENA)

