ΡΙСΛ R R O

Calibration strategies for cavity ring-down spectroscopy

Renato Winkler, Ph.D Applications Scientist

HIGHGAS Stakeholder Workshop November 14th, 2014

Greenhouse Gas instruments

CRDS Analyzer CO₂ CH₄ H₂O Measurements in Air Model G2301

The world's highest precision analyzer for the top three greenhouse gases

- · Global #1 in precision and accuracy, and portability
- · The lowest guaranteed drift of any instrument
- · Unique water correction feature automatically reports dry mol fraction
- Innovative software featuring intuitive user interface & customization tools
- · World class customer service and technical support

CRDS Analyzer $CO_2 + CO + CH_4 + H_2O$ Model G2401

The world's only field-deployable analyzer capable of measuring the four main atmospheric trace gases simultaneously and continuously.

- · Global #1 in precision, accuracy, and portability
- Capable of meeting WMO Data Quality Objectives for CO, CO₂ & CH₄
- Guaranteed lowest drift of any continuous greenhouse gas measurement instrument
- · Unique water correction automatically reports dry gas mol fractions

ΡΙCΔRRO

GHG Measurements: The Mauna Loa CO₂ Record

ΡΙСΛ R R O

The measurement cell – small and robust

Cavity Ring-Down Spectroscopy – Hardware

• Laser light at a wavelength that the molecule does absorb light

Stronger light absorbance -> shorter ring-down time

© 2014 Picarro Inc.

Pressure and temperature stability

Tightly control the conditions inside the cavity, so that variations of the environmental conditions* have no signifcant effect on: Cavity Temperature Stability (± 0.007 °C) Cavity Pressure Stability (± 0.0002 atm)

*The analyzer is placed in an environmental chamber where the temperature is ramped up (then down), while measuring a cylinder of compressed air.

ΡΙCΛRRO

© 2014 Picarro Inc.

What Makes a Great GHG Instrument?

- Stability, Stability, Stability!
 - -The more unstable the instrument is, the more you have to calibrate, and calibration gases are:
 - Costly
 - Difficult to deploy remotely (it's not so easy to ship gas bottles from NOAA to Greenland or Borneo or wherever the station is)
- Small sample size
 - -The ability to measure a small amount of gas means that the expensive calibration standard lasts a long time

 $P \mid C \land R \land R \land O$

Cavity Ring-Down Spectroscopy – Low Drift

The long-term effects of this control and stability are clear

ΡΙСΛ R R O

Picarro G2401 meets WMO /GAW specifications

Performance Specifications, in dry air	CO ₂	со	CH ₄	H ₂ O
Precision (5 sec / 5 min, 1- σ) Guaranteed for below specified range & conditions - reference gas not needed	<150 ppb / <50 ppb	<30 ppb / < 2 ppb	< 1 ppb / < 0.7 ppb	< 200 ppm / < 50 ppm
Max Drift at STP (over 24 hrs / 1 month) (peak-to-peak, 50-minute average) Guaranteed for below specified range & conditions - reference gas not needed	150 ppb / 500 ppb	15 ppb / 50 ppb	1 ppb / 3 ppb	100 ppm ± 5% of reading
Max Uncertainty Using Reference Gas* (1hr average, 2-sigma) Meets WMO Data Quality Objective for GAW Stations	< 50 ppb	< 2 ppb	< 1 ppb	n/a
Automated Determination of Dry Mol Fraction	Included	Included	Included	n/a
Operating Range	0 – 1000 ppm	0 – 5 ppm	0 – 20 ppm	0 - 7 %v H ₂ O / 39 °C dew pt (non-condensing)
Guaranteed Specifications Range	300 – 500 ppm	0 – 1 ppm	1 – 3 ppm	0 - 3 %v H ₂ O / 25 °C dew pt (non-condensing)
Measurement Interval	< 5 seconds	< 5 seconds	< 5 seconds	< 5 seconds
Rise/Fall time (10 - 90 % / 90 - 10%)	< 5 seconds	< 5 seconds	< 5 seconds	< 5 seconds

ΡΙΟΔ R R Ο

"Calibrate-ability" (that is, drift) in a CRDS Instrument

(Actually, what follow is true of most optical instruments)

© 2014 Picarro Inc.

Calibration, is it needed?...yes it is

1)

Even a perfect instrument with a 1-sigma standard deviation of ~0 Does not report the **"Truth"** and has a non-zero **Bias**

2)

At Picarro we build instruments that have very high **precision** and very low **drift**

PICARRO

Precision:

Precision is the closeness of agreement between independent measurements of a quantity under the same conditions. It is a measure of how well a measurement can be made **without reference to a theoretical or true value**.

www.nde-org

© 2014 Picarro Inc.

How Calibration Is Performed

What is the physical basis of the difference?

© 2014 Picarro Inc.

NPL Management Ltd - Internal

The basic elements of optical spectroscopy

The basic elements of optical spectroscopy

What if the Spectrometer Isn't Perfect?

Calibration of GHG Concentration Instruments

Drift in a G2401 (CFKADS)

Typical Calibration Strategy for GHGs

- Calibrate with 3-5 bottles infrequently (start of life, yearly, etc) to verify instrument linearity over full range of measurements
- Calibrate in the field on a daily / weekly / monthly basis with 2-3 bottles
- "Target Tank" Always have one known bottle that does not participate as a calibration reference to validate that the sampling system and calibration methodology gives the right answer

Calibration of $\delta^{13}CH_4$ and $\delta^{13}CO_2$ for atmospheric measurements

Testing the Instrument: Precision and Drift

© 2014 Picarro Inc.

How Does Drift in an Infrared Isotope Spectrometer Manifest?

$$\delta_{13} = 1000 \left(\frac{r_{sample}}{r_{VPDB}} - 1 \right) \qquad r_{sample} = c_{13}/c_{12} \qquad c = xkm + \varepsilon$$
$$\delta_{true} = 1000 \left(\frac{(x_{13}k_{13}m_{13} + \varepsilon_{13})/(x_{12}k_{12}m_{12} + \varepsilon_{12})}{r_{VPDB}} - 1 \right)$$

Ignore ε_{12} when $m_{13} << m_{12}$, and $x_{13} \sim x_{12} \sim 1$

$$\delta_{true} = 1000 \begin{pmatrix} \frac{k_{13}m_{13}/k_{12}m_{12}}{r_{VPDB}} - 1 \\ +(\frac{x_{13}}{x_{12}} - 1)\frac{k_{13}m_{13}/k_{12}m_{12}}{r_{VPDB}} \end{pmatrix} \quad \begin{array}{l} \delta_{raw} \\ \text{Delta span drift} \\ \text{Delta span drift} \\ +\varepsilon_{13}/x_{12}k_{12}m_{12}r_{VPDB} \end{pmatrix} \quad \begin{array}{l} \left[\text{concentration} \right]^{-1} \text{drift} \\ \end{array}$$

$$\delta_{true} = \delta_{raw} + B(\delta_{raw} + 1000) + \frac{A}{{}^{12}CH_4}$$

ΡΙСΛ R R O

© 2014 Picarro Inc.

A HI – LO Calibration Scheme

$$\delta_{true} = \delta_{raw} + B(\delta_{raw} + 1000) + \frac{A}{{}^{12}CH_4}$$

- delta span drift affects high and low concentration equally
- conc⁻¹ drift affects low concentration bottles more

A _ C

• Calibration Strategy: Use two known bottles, a HI (C_{HI} and δ_{HI}) and a LO (C_{LO} and δ_{LO}), to determine A_i and B_i in each calibration period τ_i

1 4

C

Define:
$$\Delta_H \equiv \delta_{HI} - \delta_{HI \, raw}$$
 and $\Delta_L \equiv \delta_{LO} - \delta_{LO \, raw}$
$$A_i = \left[\frac{\Delta_H (\delta_{LO \, raw} + 1000) - \Delta_L (\delta_{HI \, raw} + 1000)}{(\delta_{LO \, raw} + 1000)} - \frac{(\delta_{HI \, raw} + 1000)}{C_L} \right]_i$$

$$B_{i} = [(\Delta_{H} - A_{i}/C_{H})/(\delta_{HI\,raw} + 1000)]_{i}$$

PICARRO

Testing the Scheme – 40 days and 40 nights

Calibration – [conc]⁻¹ Drift Dominates

© 2014 Picarro Inc.

Target Tank Stability After Hourly Calibration

ΡΙСΛ R R O

Recommended Calibration Strategy for isotopic measurements

- Calibrate with 3 (or more) ref. gases infrequently (start of life, yearly, etc) to verify instrument linearity over full range of isotopic and concentration range, and to characterize your working standards
- Calibrate in the field on every couple of hours / 2-times daily with 2 working standards bracketing the range in delta values and concentration (HI LO scheme)
- "Daily working standards" Always have 1-2 bottles that has an isotopic composition close to the samples, and acts as a quality control (daily offset and drift)

Thank you for your attention

Questions?

• Feel free to contact me:

rwinkler@picarro.com

Picarro analyzers: used and recommended by the world's leading scientists, in industry and academia, and by governmental bodies*.

*selected Picarro customers

ΡΙΟΔ R R Ο