

EMRP ENV52 HIGHGAS Isotopic CO₂ reference standards

Tanıl TARHAN (TUBITAK) Ruth Hill-Pearce (NPL)

Stakeholder Workshop 9th March 2016 VSL Thijsseweg 11, 2629 JA Delft, The Netherlands

An investigation of systematic biases introduced from instrumentation at monitoring stations when reference gases vary in isotopic composition from the measured environment. (NPL, TUBITAK)

Focus will be on:

- Development of reference standards of CO₂ with varying isotopic composition
- Studying the influence of the variation in CO₂ isotopic composition between the reference standard and the measured sample on instrument response

Deliverable List

Deliverable number	Deliverable description	Participants	Deliverable type	Delivery date
1.2.1	Specification of a suite of at least 4 CO ₂ mixtures with varying isotopic content	NPL	List	May 2015
1.2.2	Specification of the IRMS facility emailed to NPL	TUBITAK	Email	Jun 2015
1.2.3	Protocol describing the IRMS validation measurements planned for CO ₂ mixtures	NPL	Protocol	Nov 2015
1.2.4	At least 4 reference standard mixtures of CO_2 with different isotopic compositions (covering at least a relative shift in the δ scale of 25 δ 13C ‰) prepared by blending different amounts of 13CO ₂ with commercially available CO ₂	NPL	Artefact	Jan 2016
1.2.5	Mixtures in D1.2.4 quantified for isotopic composition using IRMS	TUBITAK	Dataset	May 2016
1.2.6	Analytical bias related to CO ₂ isotopic composition quantified for CRDS	NPL	Dataset	Nov 2016

- Task 1.2.1: Specification of a suite of at least 4 CO2 mixtures with varying isotopic content
- Delivery Date : May 2015 (Completed)
- Participants : NPL
- NPL has specified a suit of CO₂ mixtures which span a range of isotopic compositions. The CO₂ mixtures are summarised below:

CO ₂ source	δ value	Concentration [ppm]			ppm]	
Underground source	δ -1.38			400		
NPL blend	δ -5.25	360 380		400	420	440
Industrial source	δ -34.19			400		
Combustion source	?			400		
Fermentation source	?			400		

- NPL blend is blended from pure ¹³CO₂ and the industrial source CO₂
- NPL planned purchasing of a purely fermentation or combustion source

Task 1.2.2: Specification of the IRMS facility emailed to NPLDelivery Date: June 2015 (completed)Participants: TUBITAK

 Current IRMS facility used for determination of adulteration in commercially available honey samples*

IRMS Facility (Thermo Finnigan MAT 253)

*Adnan et *al.*, 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS, Food Chemistry 130 (2012) 1115–1121,

- Adaption of current IRMS facility for isotope gas measurements were examined
- A gas sampling unit was developed for the direct injection from the cylinders in gaseous phase

Auto gas sampling unit + GC-IRMS

 Search for isotope standards which will be used for testing purposes was carried out and the standards were purchased from NIST.

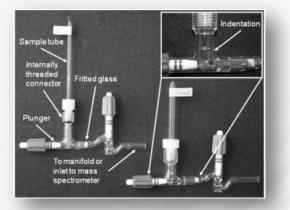
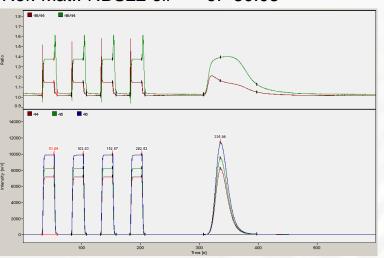
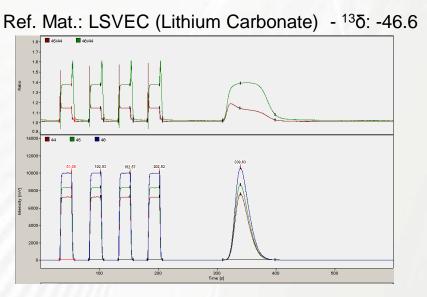

8564: CO₂-Biogenic, Modern Biomass Origin (Carbon Dioxide)

Table 1. Reference Values for $\delta^{13}C_{VPDB}$ and $\delta^{18}O_{VPDB}$

Reference Material	$\delta^{13}C_{VPDB} \pm U^{(a)}$	$\delta^{18} O^n_{VPDB} \pm U^{(a)}$	
	(‰)	(‰)	
RM 8562 (CO ₂ -Heavy)	-3.76 ± 0.07	-8.43 ± 0.44	
RM 8563 (CO ₂ -Light)	-41.56 ± 0.09	-23.61 ± 0.48	
RM 8564 (CO ₂ -Biogenic)	-10.45 ± 0.07	$+0.06 \pm 0.40$	

• A tube cracker to be able use these reference materials has been manufactured.

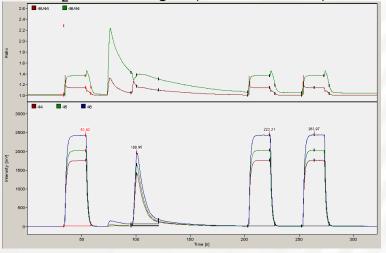

Rapid Commun. Mass Spectrom. 2010; 24: 3219-3220


Tube cracker at TUBITAK UME

• Calibration of the working CO₂ gas used in IRMS

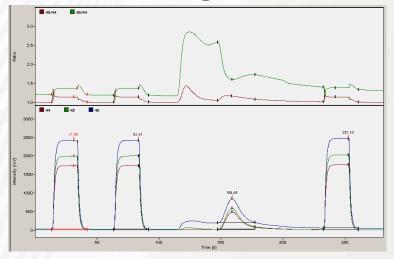
Ref. Mat.: NBS22 oil - ¹³δ: -30.03

Replicate	1	2	3	4	5	6	7	8	9	10	Total	
	-41.428	-41.353	-41.44	-41.485	-41.393	-41.439	-41.317	-41.457	-41.385	-41.417	Average	
¹³ δ (‰)	-41.422	-41.361	-41.447	-41.492	-41.407	-41.446	-41.314	-41.461	-41.392	-41.393	-41.4112	
0 (700)	-41.422	-41.367	-41.453	-41.487	-41.392	-41.446	-41.315	-41.457	-41.378	-41.396	SD	
	-41.409	-41.359	-41.436	-41.494	-41.393	-41.43	-41.31	-41.466	-41.379	-41.411	0.051258	
Average	-41.4203	-41.36	-41.444	-41.4895	-41.3963	-41.4403	-41.314	-41.4603	-41.3835	-41.4043	RSD	40
SD	0.008016	0.005774	0.007528	0.004203	0.007182	0.007588	0.002944	0.004272	0.006455	0.011587	0.123779	¹³ δ value of
												reference
Replicate	1	2	3	4	5	6	7	8	9	10	Total	
	-41.432	-41.982	-42.02	-41.149	-42.065	-41.395	-41.448	-41.146	-41.542	-41.822	Average	gas CO_2 :
¹³ δ (‰)	-41.417	-41.993	-42.036	-41.169	-42.052	-41.394	-41.458	-41.142	-41.545	-41.825	-41.6027	0 2
	-41.447	-41.987	-42.042	-41.164	-42.052	-41.385	-41.453	-41.138	-41.535	-41.824	SD	
	-41.44	-41.969	-42.041	-41.171	-42.063	-41.412	-41.454	-41.136	-41.544	-41.82	0.348111	-41.507
Average	-41.434	-41.9828	-42.0348	-41.1633	-42.058	-41.3965	-41.4533	-41.1405	-41.5415	-41.8228	RSD	
SD	0.012884	0.01021	0.010178	0.009946	0.006976	0.011269	0.004113	0.004435	0.004509	0.002217	0.123779	0



10

• Preliminary gas analyses with gas injection trials


Column	HP-PLOT Q 30 m length, 0.53 mm I.D and				
	40 µm film thickness				
Injection:	Splitless mode				
Injection volume:	800 μL (syringe), 2 ml (autosampler)				
Injection temp.:	200 °C				
Carrier gas:	Helium, constant flow 10 mL/min.				
Oven temp. program:	40 °C, 4 min				

CO₂ reference gas (NIST RM 8564)

injection by syring poor repeatability

400 ppm CO_2 – air mixture

Replicate	1	2	3	4	5	6
¹³ δ (‰)	-3,659	-3,362	-3,548	-3,626	-3,499	-3,732
Average	-3.571					
SD	0.131					
RSD %	3.674					

- Task 1.2.3
 : Protocol describing the IRMS validation measurements planned for CO₂ mixtures
- **Delivery Date :** November 2015 (Completed)

Participants : NPL

The protocol has been prepared by NPL together with TUBITAK.

NPL will make the following isotopic CO $_2$ mixtures as specified in deliverable 1.2.1;									
CO ₂ source	Nominal 5 ¹³ C value [*/]	Amount fraction [µmolmol ⁻¹]							
Underground source	-1			400*					
NPL blend	-5	360	380	400*	420	440			
Atmospheric source	-8			400					
Industrial source	-30			400*					
Combustion source	?			400*					

Deliverable 1.2.3: Protocol describing the IRMS validation measurements

planned for CO₂ mixtures

* Indicates mixtures to be measured at TUBITAK. Nominal delta values are from IRMS measurements using VPDB as R_{inf}

The amount fraction of the NPL blend mixtures will be measured by cavity ring down spectroscopy (CBD) with a Picare G3201 and a LGR COLA4 instrument to investigate the linearity with respect to the amount fraction of CO₂ is expected to lead to a deviation from the gravimetric amount fraction as only ^{HCHD}O will be measured. In addition 58⁻¹C am 8⁻¹C, the COLA44 instrument to ¹⁰CO₂ of the LGR COLA44 instrument to a more spectral or the spectral comparison of the LGR COLA44 instrument to ¹⁰CO₂ (635), ¹⁰CO₁ (636) and ¹⁰CO₁ (636) and ¹⁰CO₁ (636) will be reference mixtures in the task at 400 µmolmo² will be reference monotified by the stoteperial with the composition numfifted by isotope ratio mass spectrometry (IRMS). TUB/TAX will validate the measurements of ¹¹CO⁴O₂ (635) and ¹⁰CO₁ (635) in the strument.

The calibration lines for 626002 and 636 CO₁ are generated from the measurement of the varying amount fraction mixtures at a constant 6¹⁰C lostopic ratio (NPC blend). As the isotopic ratio of the NPC blend is accurately (known from IRMK measurements, the isotopic ratio of the varying delta value mixtures can be determined by taking the analytical values of amount fraction of 626CO2 and 636CO2 present in the mixtures carified against the calibration curves. The IRMK measurements will also give a 6¹⁰C value compared to R_{Perf} of the four isotopic mixtures at 400µmolmol¹, the amount fractions of 626CO2 and 636CO2 can be determined from the IRMK values using the calculation shown below and compared to the ratio determined through the former method.

 $\partial^{13}C = \left[\frac{R_{sample}}{R_{ref}} - 1\right] \times 10^3$ Where R_{sample} = 636/626

 $R_{13} = \left[1 + \frac{\partial^{13}C}{1 \times 10^3}\right] R_{ref}$

Assuming the total $O_2(T_{CO2})$ is the sum of the 626 and the 636 isotopologues

 $T_{CO2} = 626 (R_{13}) + 626$

$$\frac{T}{1 + \left[1 + \frac{\partial^{13}C}{1 \times 10^3}\right] R_{ref}^{13} + \left[1 + \frac{\partial^{10}C}{1 \times 10^3}\right] R_{ref}^{18}}$$

IRMS Measurements:

TUBITAK will make the measurements of above mentioned isotopic CO₂ gas mixtures by their available IRMS facility. Measurements will contain two steps:

In the first step, the reference gas CO₂ will be calibrated against two reference materials NB522 oil and LSVEC by Elemental Analyser Isotope Ratio Mass Spectrometry (EA-IRMS) method with known ¹⁷6 values of -30.03 °/_{so} and -46.6 °/_{so} respectively. Then the reference value for CO₂ reference gas will be determined by taking average of these NB522 oil and LSVEC reference materials.

The column used in the GC is 19095P-Q04, HP-PLOTQ with 30 m length, 0.53 mm ID and 40 μm film thickness. GC method conditions developed for 13 6 measurement of CO2 are given in Table 1.

Table 1. GC Parameters

Injector:	Splitless mode
Injection volume:	800 µL
Injection temp.:	200 °C
Carrier gas:	Helium, constant flow 10 ml/min

- Task 1.2.4: 4 reference standard mixtures of CO2 with different isotopic
compositions
- Delivery Date : January 2016
- Participants : NPL
- These mixtures have now been made at NPL:

CO ₂ source	δ value	Amount fraction [µmol/mol]					
Underground source	-4.5		380*				
NPL blend	-8.5	360	380*	400	420	440	
Industrial source	-33		380*				
Combustion source	-45		380*				
* Indicates mixtures to be measured at TUBITAK in D1.2.5							

• They will be sent to TUBITAK UME in March 2016.

Future Activities

Task 1.2.5 : Mixtures in D1.2.4 quantified for isotopic composition using IRMS
Delivery Date : May 2016
Participants : TUBITAK

 The mixtures prepared by NPL will be analyzed using IRMS facility at TUBITAK according to the protocol.

Future Activities

- Task 1.2.6
 : Analytical bias related to CO₂ isotopic composition quantified for CRDS
- **Delivery Date :** November 2016
- Participants : NPL
- NPL will compare the mixtures prepared in D1.2.4 using a commercial CRDS to determine the influence of isotopic distribution of CO₂ on the response. This will provide information on possible corrections to CRDS analyser response.