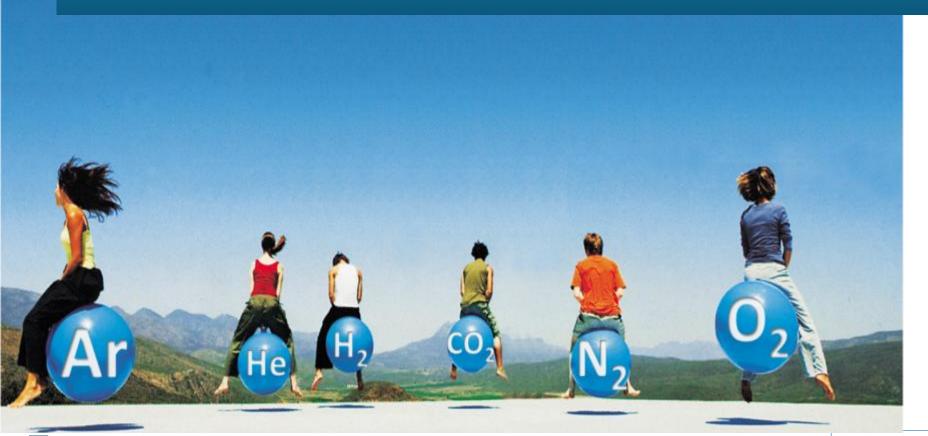

Increasing Accuracy in Environmental Measurements

Tracey Jacksier, Adelino Fernandes, Werner Weterings

March 2016

Stable Isotopes & The Environment

- ■Alphagaz[™] Natural Air
- Summary



Air Liquide, world leader in gases for industry, health and the environment

Stable Isotopes & The Environment

Air Liquide, world leader in gases for industry, health and the environment

2016

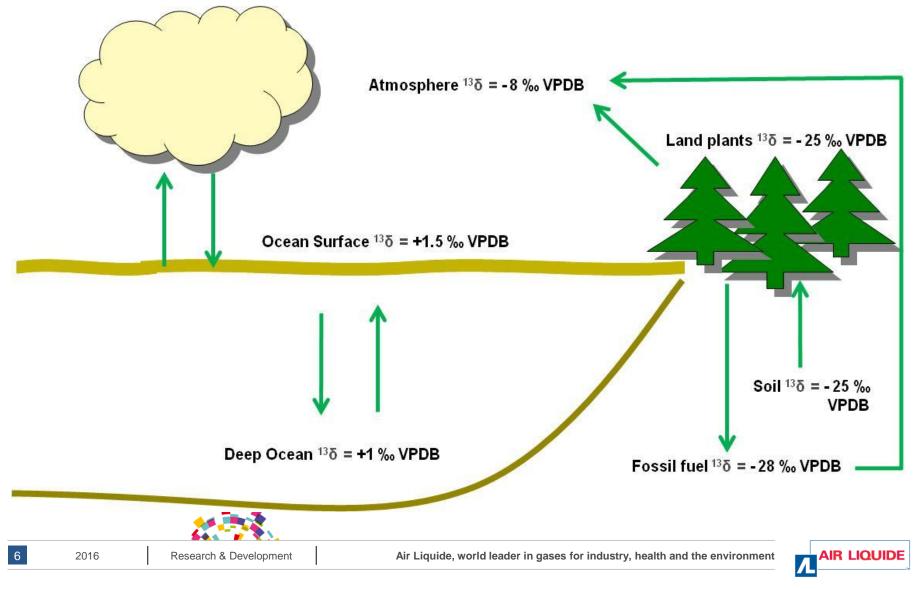
- The Isotopic ratios of gases are a natural bar code to indicate
 - Geographical origin
 - Compounds formation
- Environment
 - Biogenic/Thermogenic Pollution
 - Climate change

Air Liquide, world leader in gases for industry, health and the environment

Why measure sources of atmospheric CO₂?

- Important Greenhouse gas which is regulated by some countries and international agreements
- Understand changes in the Earth's climate

Different sources of CO₂ have different signatures


- Atmospheric gases \rightarrow -8 ‰
- ■Soil → -28 ‰
- ■Anthropogenic → <28 ‰</p>

Global Carbon Cycle (Fractionation)

 $^{13}\delta$ or $\Delta 13C$

Understanding Changes in Earth's Climate

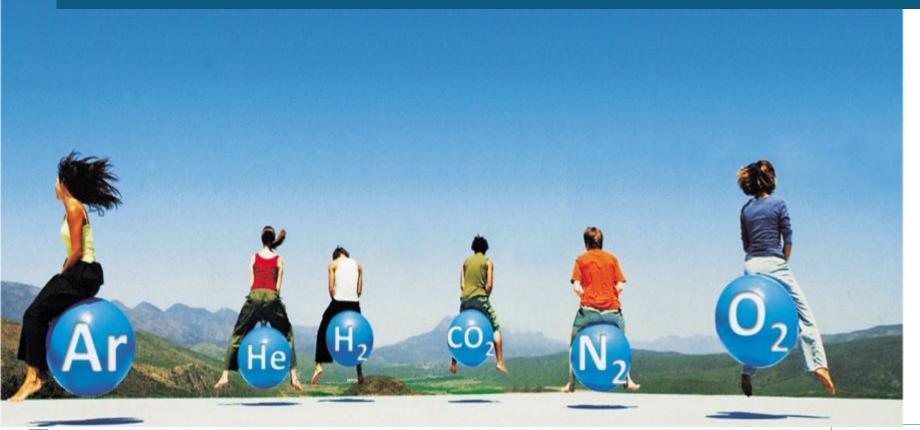
Long-term and high-precision measurements of GHG are necessary to understand changes in the Earth's climate

Global Climate long-term Observing Systems providing the observations required to monitor the climate and detect climate change, with reliable measurement technologies and standards.

Central Analytical Laboratories preparing calibration material and Gas Standards High-quality, traceable and calibrated in-situ measurements

Stable Reference Gas Standards with low uncertainties and metrological traceability providing coherence and confidence through international comparability to meet World Meteorology Organization (WMO) and Regulatory requirements

Many stations from the monitoring networks as well as R&D centers which study the greenhouse effect are using synthetic air instead of natural air standards


- Synthetic air has a different isotopic ratio compared to atmospheric natural air
- Significant errors in the analysis of the greenhouse gas effect

A reliable source of Natural air will reduce measurement errors!

Jungfraujoch high-Alpine station (3580 m); in the GAW program of the WMO included in the Swiss National Air Pollution Monitoring Network

AlphagazTM Natural Air

2016

Development of new standard material suites to certify

- \square CO₂ at ambient levels (available)
- \blacksquare CH₄ at ambient levels (available)
- Target uncertainties
 - World Metrological Organization Data Quality Objectives between 0.01% and 0.05% relative
- Production of trace gases
 - *■ALPHAGAZ*™ Natural Air
 - Correct isotopic ratio ${}^{13}C/{}^{12}C$ for CO, CO₂, CH₄ (N₂O and SF₆)

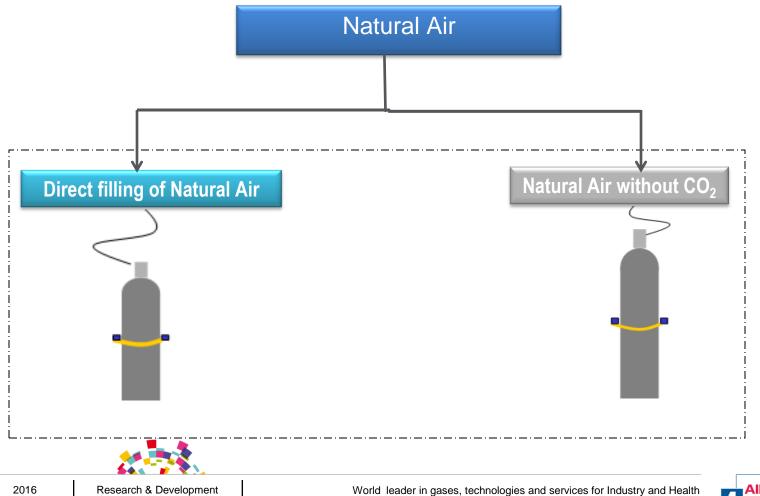
2016

Research & Development

Tropospheric Natural Air

Natural Air collected at an altitude >2300 meters

- Natural Air is filled in situ
- AL supported with Technology developed by NOAA
 - Property of AL



Natural Air

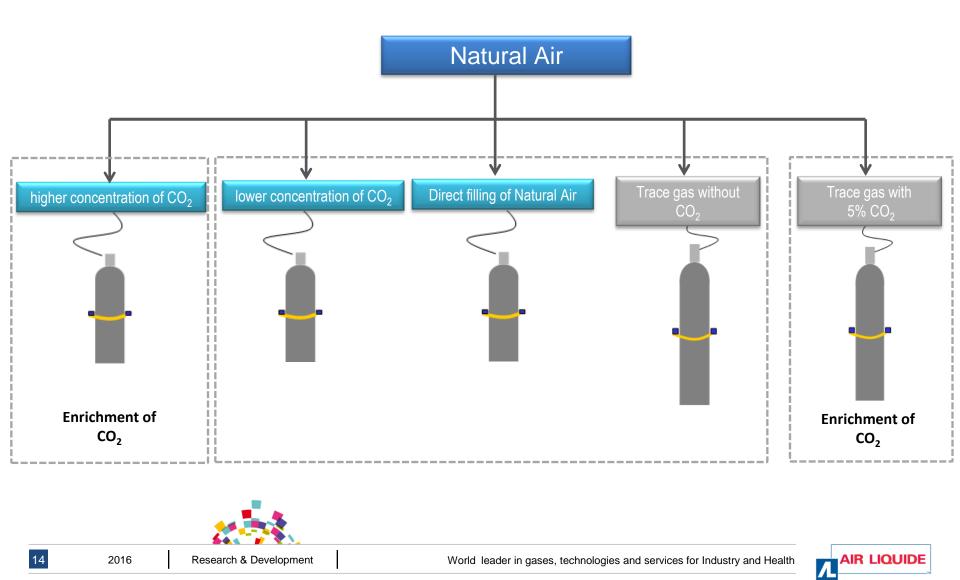
■ ALPHAGAZ[™] Natural Air

 \square Purification to eliminate traces of CO₂

GHG Atmospheric Research

	δ ¹³ C _{VPDB} [‰]	δ ¹⁸ Ο _{VPDB} [‰]	δ ¹⁸ Ο _{VSMOW} [‰]
Natural Air (batch 1)	-8.46	-2.66	28.16
Natural Air (batch 2)	-8.93	-2.76	28.06

	Natural Air				
Component	Natural Comp	Purified Comp			
O ₂	20.97%	20.97%			
N ₂ O	329 ppb	306 ppb			
Ar	0.964%	0.957%			
CH ₄	1,819 ppb	1,828 ppb			
СО	0.157 ppm	0.170 ppm			
CO ₂	402.7 ppm	29.8 ppb			
SF ₆	8.64 ppt	8.63 ppt			


Analysis by The University of Salamanca, Spain

13

Adjusting Ratios in Natural Air

Adjusting CO₂ Ratios in Natural Air

NOAA & GAW

■ δ^{13} C in the unpolluted troposphere: -7.5 ‰ → -9 ‰ vs VPDB Can adjust the δ^{13} C ratio

		δ ¹³ C _{VPDB} [‰]
Natural Air		-8.46
Natural Air	Doped with a fossil source of CO ₂	-9.01
Natural Air	Doped with a natural source of CO ₂	-8.87

Analysis by The University of Salamanca, Spain

15

2016

Research & Development

Natural Sources of CO₂

Refinery source

- ¹³C = -40 per mil
- ¹⁸O = -24 per mil

Natural CO₂ Dome

- ¹³C = -3 per mil
- ${}^{18}O = -6 \text{ per mil}$

Grain alcohol processing facility

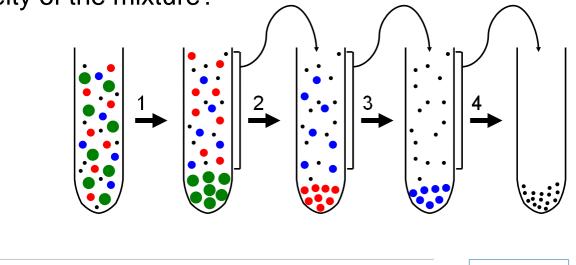
- ¹³C = -11 per mil
- ¹⁸O = -3 per mil

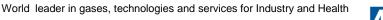
Ammonia plant

- ${}^{13}C = -44 \text{ per mil}$
- ¹⁸O = -27 per mil

Available Ranges

δ¹³C: -44 to +50


δ¹⁸Ο: -27 to +50


2016

- Does fractionation occur when making batches of identical mixtures?
 - Does the difference in mass and therefore weight play a roll?
 - Can flow pathways: Direct vs. tortuous play a role?
- Can the ratios be adjusted?

What about homogeneity of the mixture?

Concentration Uniformity

Do cylinders from the same batch have the same δ values?

¹⁵N₂O / N₂¹⁸O

	δ ¹⁵ N avg	δ^{15} N stdev	δ^{18} O avg	δ^{18} O stdev	Ν
A1	0.063	0.039	-3.143	0.067	15
A2	0.057	0.049	-3.152	0.045	20
A3	0.056	0.042	-3.140	0.064	28
Total	0.058	0.043	-3.145	0.059	63

Fractionation does not appear to be an issue during cylinder filling

Values are relative to a standard gas used in the lab.

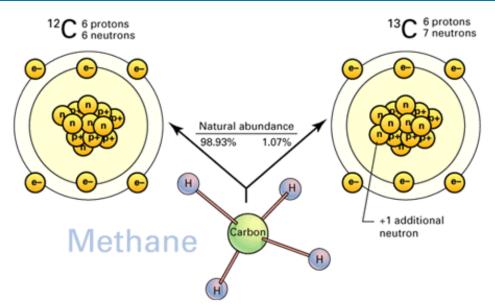
Brian N. Popp, Professor University of Hawaii, SOEST, Department of Geology & Geophysics1680 East-West Road, Honolulu, Hawaii 96822

Concentration Uniformity

Cylinder filling as a function of manifold cylinder position vs. direct filling from mother cylinder

	δ ¹³ C Methane					δ²H Methane							
	Cylinder	#1	#2	#3	avg	stdev	RSD	#1	#2	#3	avg	stdev	RSD
Direct 1	519	-40.4	-40.4	-40.5	-40.4	0.06	0.14%	-59	-59	-59	-59	0.00	0%
Direct 2	521	-40.5	-40.5	-40.5	-40.5	0.00	0%	-60	-59	-59	-59.3	0.58	0.97%
Manifold 1	560	-40.5	-40.4	-40.4	-40.4	0.06	0.14%	-58	-58	-58	-58	0.00	0%
Manifold 2	596	-40.4	-40.5	-40.3	-40.4	0.10	0.25%	-59	-60	-59	-59.3	0.58	0.97%
Manifold 3	597	-40.4	-40.4	-40.4	-40.4	0.00	0%	-59	-61	-60	-60	1.00	1.67%
Pooled					-40.4	0.06	0.15%				-59.1	0.83	1.41%

Manifold position does not appear to impact $\delta^{13}C$ and $\delta^{2}H$ in methane

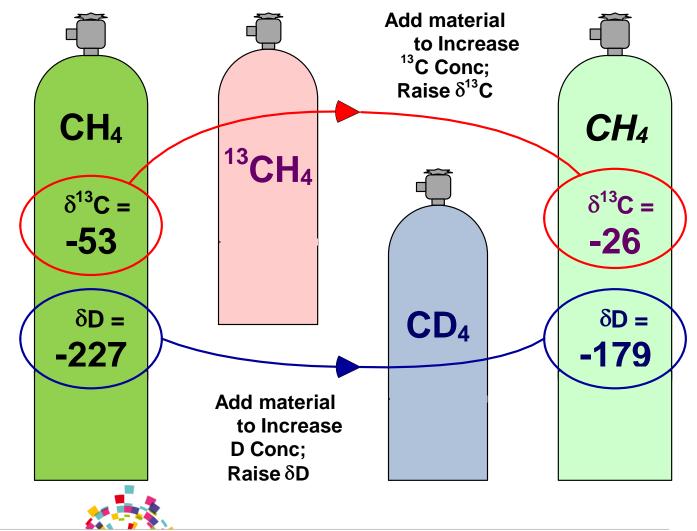

Compares well with direct filling from the mother cylinder

2016

Adjusting Isotope Ratios

C-H Atomic Permutations

Characterization → of source material required!


10 Different Molecules!

2016

Adjusting Isotope Concentrations

World leader in gases, technologies and services for Industry and Health

Stable Isotope Analysis

Managing analytical uncertainty
 Eliminate All Excess Error Sources
 Minimize "Basic" Analysis Uncertainty Sources

Reference Material (U_{S})	1.0%
Analyzer Calibration (U_c)	0.8%
Analyzer Precision (U_P)	0.4%

"Propagation of Error" Calculation
Uncertainty $(U_T) = \pm \sqrt{(1.0)^2 + (0.8)^2 + (0.4)^2}$ Uncertainty $(U_T) = \pm 1.3 \%$

2016

AL Commercial Products

Stable Isotopes

- First offer launched in 2013 for Oil & Gas
- Today: Environment, Food Authentication, Pharma, Medical
- "Off the Shelf"
 - Pure gases
 - Mixtures with fixed composition and isotope ratios
- Custom Mixtures
 - Customer Selected Components and Concentrations
 - Customer Specified Isotope Ratios
 - "Adjusted" by Individual Component

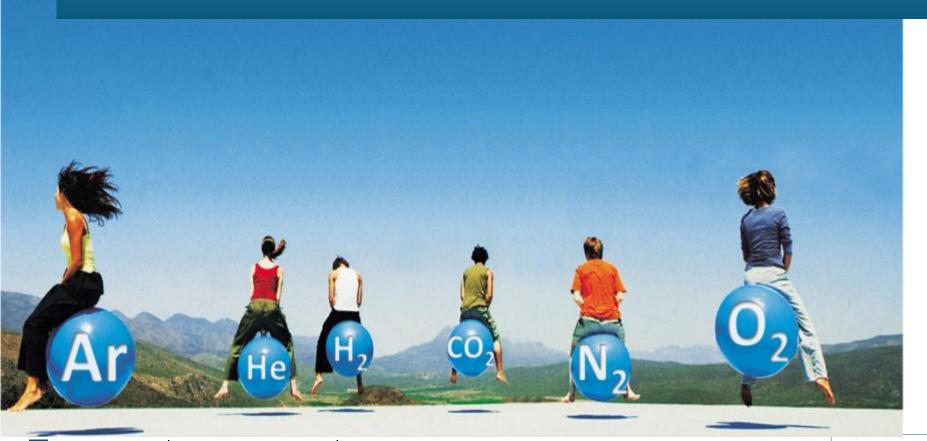
2016

Research & Development

Air Liquide Stable Isotopes

Component and Isotope Ranges Available

Concentration / Accuracy	Molecular Composition	Isotopes / Ranges	Repeatability
ppm to %	C ₁ -C ₅ Hydrocarbons	δ^{13} C: -70 to +25; δD: -300 to +50	Component
	CO ₂ / CO	δ^{13} C: -60 to +50	Dependent
1 1 to 50/	H ₂ S	δ^{34} S: -50 to +50	0.02 to 10 ‰
± 1 to 5%	N ₂	δ^{15} N: -25 to +25	
Compositi	on Analysis	Isotope A	Analysis



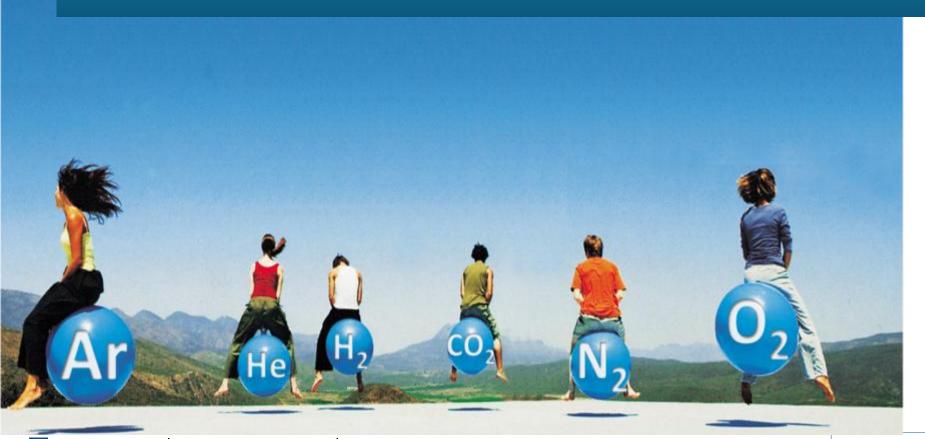
Research & Development

24

Summary

Research & Development

25


- Air Liquide is developing new technologies and applications which
 - Enable our customers to accurately measure emissions, process streams & product quality
 - Addresses market demands
 - Realize value for our customers
- Innovation is the key to success
 - What can we do for you?

2016

Questions?

THANK YOU FOR YOUR ATTENTION!

www.airliquide.com

Air Liquide, world leader in gases for industry, health and the environment

Research & Development

2016