Determination of optimized frequency and frequency ratio values from over-determined sets of clock comparison data

Helen Margolis and Patrick Gill

Optical clocks have now reached levels of stability and accuracy that surpass the performance of the best caesium fountain primary standards.

Optical clocks can be used as secondary representations of the second.

Almost all data considered so far comes from absolute frequency measurements of optical clocks relative to caesium primary standards.

However future information about the reproducibility of optical clocks will come mainly from direct optical frequency ratio measurements.

Optical frequency ratio measurements

- Within the ITOC project [2], a coordinated programme of clock comparisons will lead to:
 1. a set of frequency ratio measurements between high accuracy optical clocks being developed in European NMs;
 2. a comprehensive set of absolute frequency measurements with uncertainties at the limit set by caesium primary standards.

- This complete set of measurements will be over-determined, in the sense that it will be possible to deduce some of the frequency ratios from several different measurements.

- New methods are required for analysing such over-determined sets of clock comparison data.

Analysis procedure

- To derive a self-consistent set of optimised frequency ratio values from a set of clock frequency comparison experiments we use a least-squares adjustment procedure [3].

- This is based on the approach used by CODATA to provide a self-consistent set of internationally recommended values of the fundamental physical constants [4].

- The software has been tested by using the same input data considered by the WGFS in deriving the CIPM recommended frequency values.

- All data is stored as frequency ratios (optical frequency ratios, microwave frequency ratios or optical-microwave frequency ratios).

- Correlations between the measured quantities are included in the analysis.

Results obtained from existing data

- The analysis software reproduces the 2013 CIPM recommended frequency values.
 - The sole exception is for 40Ca (for which the WGFS used an unweighted mean).

- The uncertainties determined using the analysis software are smaller than the uncertainties of the CIPM values.
 - The WGFS takes a conservative approach to estimating uncertainties because values are typically derived from only a few independent measurements.

- The inclusion of new data in the analysis shows the wisdom of this approach.

- These methods were used by the WGFS to update the list of recommended frequency values in September 2015 (but with expanded uncertainties).

Importance of correlations

- Consider the hypothetical 10-day measurement campaign illustrated.
 - Each optical clock runs 60% of the time.
 - For the 6 measured frequency ratios, there are 12 non-zero correlation coefficients.

- Correlations arise from both statistical and systematic uncertainties.

- The inclusion of new data in the analysis shows the wisdom of this approach.

- These methods were used by the WGFS to update the list of recommended frequency values in September 2015 (but with expanded uncertainties).

References

This work was funded by the European Metrology Research Programme as part of the project “International timescales with optical clocks” (ITOC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.