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Physics package of the transportable 
clock.

Clocks that can be operated outside the laboratory are 
needed for:

► Direct comparisons of optical frequencies  without reference
 to Cs primary clocks.

► Frequency comparisons between distant experiments.

► Local measurements of the geo-potential (chronometric
 levelling, relativistic geodesy).

Proof-of-principle experiment (February–March 2016):

► Measure 1000 m height difference with 0.5 m uncertainty,
-17 (i.e., 5 10  fractional frequency uncertainty in   red shift) by·

 comparison of two optical clocks over a 100 km  fibre link.

► Part of the EMRP project International Timescales with
 Optical Clocks (ITOC).

► Close collaboration with geodesists at Leibniz Universität
 Hannover within CRC 1729 geo-Q.
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Transportable clocks

Accuracy and stability
Design goal for transportable clock:

Systematic uncertainty and instability 
comparable to state-of-the-art optical clocks.

Comparison with PTB s stationary clock:’

► Stability limited by clock laser
-16 (with frequency instability of 6 10  at 1 s).·

► Clock instability of  ( ) , -15 -1/21.3·10 τ/s
-17 reaching an uncertainty of 3 10  after ·

 1000 s of averaging.

► Agreement with stationary clock:
-17    ν(Sr ) - v(Sr ) = 2(3) ·10 νtransportable stationary stat 0
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Thermal gradients during operation.

Thermal image of a coil.

Quadrupole coil design:

► Power dissipation of ca. 80 W per coil in continuous operation  (at 60 A current, generating a
 magnetic field gradient of ~7 mT/cm).

► Copper tubing with square cross section and large inner width  allows efficient water cooling.

► Platinum-wire temperature sensors (Pt100) with 40 mK  measurement uncertainty placed at
 critical locations.
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Schematic view of a coil.

87Spectroscopy of Sr in a lattice at 813 nm
Clock transition with transportable laser:

► A narrow line with a Fourier-limited width of
 6 Hz (FWHM) has been obtained.
 

Spin polarisation:

► Prepare atoms in m  = ±9/2 for high contrastF

 during spectroscopy.

► Optical pumping by σ-polarised light on the
1 3 S (F=9/2)– P (F =9/2) transition at 689 nm.0 1 ’
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Recent progress
Laser cooling & trapping:

► Laser-cooled atoms loaded into optical lattice
 near magic wavelength (λ ≈813 nm).m

► High-resolution spectroscopy of the clock 
1 3 87 transition S – P  in Sr.0 0

► Lamb–Dicke regime with resolved sidebands.

► Observed sideband frequencies match lattice
 parameters.

Clock operation:

► Clock laser stabilised to atomic transition.

► Preliminary evaluation of uncertainty budget.

► Side-by-side comparison with stationary 
 clock performed.

► System in the field for first, proof-of-principle
 measurement campaign.

First measurement campaign
The clock has been moved into a trailer and transported to the Laboratoire Souterrain de Modane 
(LSM) for its first measurement campaign, together with NPL s transportable comb. ’

PTB s transportable clock (back) and NPL s transportable comb ’ ’
(front) settled in at LSM inside the Fréjus tunnel.

T = 4.5 μK  
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87► One week after arrival: Sr atoms cooled and loaded
 into the lattice.

► Ten days after arrival: Clock transiton found and 
 sideband spectroscopy performed.

► Measurement campaign still in progress!

Interior of the trailer housing 
the experiment.

Sideband spectrum recorded at LSM. 

Future improvements
Reduced systematic uncertainty:

► Full evaluation of the magic wavelength.

► Improved analysis of density shifts.

Lower clock instability:

► New clock laser system based on a smaller and more stable cavity.

Better transportability and reliability:

► Optimisation of environmental conditions inside the trailer, e.g., by removing heat sources.

► Further size & weight reduction of the clock and lattice laser modules.

► Transition to a single red cooling laser with modulation sidebands (for cooling & stirring).

BBR-induced Stark shift:
4 6 8   Δ (T) = α  (T/T )  + α  [(T/T )  + O( (T/T )  )]BBR stat 0 dyn 0 0ν

► Temperature gradient:  ΔT  = 480 mKp-p

 (including sensor uncertainty)

► -17BBR shift uncertainty: u (BBR) = 1·10B

Scan of the clock transition. Magnetic line splitting and effect of spin polari ation. s
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 transportable clock laser
 stationary Sr - alternating stabilization

Allan deviation of the Sr lattice clocks  87 ’
frequency ratio during comparison.
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