

PTB's refractive index compensated absolute 3D laser meter

Jennifer Bautsch, Matthias Franke, <u>Karl Meiners-Hagen</u>, Tobias Meyer, Florian Pollinger, Günther Prellinger, Kerstin Rost, Martin Wedde, Klaus Wendt (PTB) Denis Dontsov, Wolfgang Pöschel (SIOS)

Overview:

- Introduction
- Refractive index compensation
- 3D-Lasermeter (IFM mode)
- Results in air conditioned and harsh environment
- ADM mode of 3D-Lasermeter
- Results of ADM mode
- Conclusion

- 3D metrology based on speed of light (laser tracker, LaserTracer) is affected by air refractive index
- In harsh environments several μ m/m uncertainty is possible
- Within LUMINAR a device was proposed with:
 - 3D capability like a LaserTracer
 - intrinsic compensation of air refractive index
 - fringe counting mode (IFM) like LaserTracer
 - absolute distance measurement (ADM) mode like several laser trackers
 - uncertainty $10^{-7} l$, even in harsh conditions
- Result: 3D-Lasermeter

Standard Interferometry:

- Measurement of optical path *l* with frequency stabilised laser $\Rightarrow l_0 = n l$
- Measurement of temperature, air pressure, humidity, $(CO_2) \Rightarrow$ refractive index n
- Distance: $l = l_0/n$
- Uncertainties from measurement of air parameters:

Parameter	Refractive index change
Temperature Δt = +1 °C	-1 x 10 ⁻⁶
Pressure Δp = +1 hPa	+2.7 x 10 ⁻⁷
Relative humidity $\Delta RH = +1 \%$	-1 x 10 ⁻⁸

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Refractive index compensation by two colour interferometry

Refractive index compensated interferometry:

- Measurement of optical path with two wavelengths \Rightarrow l_1 , l_2

- 1) $l = l_1 - A(l_2 - l_1)$, A constant (dry air) $A \approx 65$ for 532 nm + 1064 nm uncertainties in $(l_2 - l_1)$ are scaled by 65!

- 2) Measurement of partial pressure of water vapour $\Rightarrow p_w$ Distance $l = f(l_1, l_2, p_w)$ (independent on temperature and pressure)

- 3) From l₁ = n₁l and l refractive index n₁ can be calculated: n₁ = l₁ / l
 From n₁, pressure p, and p_w the temperature can be derived

Parameter	Standard	Compensated
Temperature Δt = +1 °C	-1 x 10 ⁻⁶	
Pressure Δp = +1 hPa	+2.7 x 10 ⁻⁷	
Relative humidity ΔRH = +1 %	-1 x 10 ⁻⁸	-2.4 x 10 ⁻⁸

Influence of changes in the air parameters:

- \Rightarrow Theoretically independent on temperature and pressure, but more sensitive to relative humidity
- ⇒ Uncertainty enhanced by factor A: $l = l_1 A(l_2 l_1)$ (≈ 65 for "optical" wavelengths, ≈ 21 for "synthetic wavelengths" at 532 nm/1064 nm)

3D-Lasermeter

- Similar design like LaserTracer
- IFM mode: frequency doubled Nd:YAG laser (1064 nm + 532 nm)
- Frequency stabilised on Iodine absorption line
- Heterodyne interferometer

Comparison with PTB 50 m comparator (geodetic base)

3D Lasermeter

Tracking is switched off.

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin Karl Meiners-Hagen

May 2015 Tracking off

- Systematic deviations around 2 m ??
- Otherwise within $\pm 2~\mu m$ up to 20 m

Comparison with PTB 50 m comparator (geodetic base)

Jan 2016

Tracking off

After optimisations:

- Systematic deviations around 2 m ??
- Scatter well below 1 μm on short path, otherwise within ±2 μm up to 20 m

- Seems to be a curve in our rail
- Deviations not yet understood (no problems with interferometer calibrations)

-
$$U = \sqrt{(1 \,\mu\text{m})^2 + (10^{-7}l)^2}$$
 for 1D, but why the effort?

Harsh environment at GUM (Warsaw) 50 m comparator

Two housings with heating fans installed for simulating harsh environment

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin Karl Meiners-Hagen

Compensated result remains constant, but with larger scatter during turbulences

Scatter during turbulences probably due to signal amplitudes.

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin Karl Meiners-Hagen

Temperature from sensors 1.5 °C off: we believe in interferometer (constant length)

- Measurements in building Q7 on a 44.7 m path
- No interferometric reference, only sensor data for temperature, pressure, humidity
- Evaluation of data:
 - length uncorrected and refractivity compensated
 - air index change (no absolute values)
 - temperature change (no absolute values)

(for absolute values of air index and temperature the absolute optical path lengths must be known)

Measurements at Airbus in Filton, March 2016

Moderate turbulences: corrected length follows a straight line, uncorrected does not.

Time

Refractive index change and measured temperature:

Sensors can't follow the refractive index (measurement cycle and thermal delay)

Heating of building turned on at 09:00

(Windy morning, up to 1 mm movement of the structure)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin Karl Meiners-Hagen

Measurements at Airbus in Filton, March 2016

Refractive index difference within 5x10⁻⁷ during heating

Possible reason: temperature distribution (lowest 5 m path had no sensors)

- Two frequency doubled Nd:YAG lasers (1064 nm + 532 nm)
- Phase locked wih 20 GHz (1064 nm) / 40 GHz (532 nm) offset
- Generation of additional frequencies with frequency shifters (AOM)

- Two frequency doubled Nd:YAG lasers (1064 nm + 532 nm)
- Phase locked wih 20 GHz (1064 nm) / 40 GHz (532 nm) offset
- Generation of additional frequencies with frequency shifters (AOM)

- Coarse distance by frequency scanning with AOM
- Uncertainty scaling bad: 7.5 mm/532 nm x 21.5 = **300 000**

Light source, now on a trolley with laser shielding

90 cm x 60 cm + 19" rack

- Fixed 40 m path at 50 m comparator in PTB
- 10 seconds averaging: 60 μm standard deviation \Rightarrow 0.2 nm between four optical wavelength results

- At Airbus with 2 m path length: >1 mm variation \Rightarrow 3.3 nm between four optical wavelength results
- Problems with polarisation in the interferometer
- In JRP "Surveying" the ADM mode works up to 864 m (<50 µm length independent standard deviation, 1x10⁻⁷ l)

Conclusions

- IFM measurements works with 1D uncertainty $U = \sqrt{(1 \,\mu\text{m})^2 + (10^{-7}l)^2}$
- Temperature range 9 °C to 22 °C verified, with gradients up to 10 °C
- 3D measurements at a CMM, 3D uncertainty around 3.5 μm
- ADM measurements suffer from problems with polarisation which were solved in the JRP "Surveying" project
- Outlook: investigation of temperature dependence of non polarising beam splitters

