

A. Balsamo, M. Pisani, C. Francese, A. Egidi, E. Audrito, D. Corona

INPLANT — A NOVEL 3D COORDINATE MEASURING SYSTEM FOR HOSTILE ENVIRONMENTS

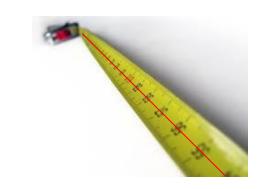
Summary

- Goals
- The concept
- The design and prototype realisation
- Validation
- Conclusions

The work package 1: Innovative measurement systems

- Goal
 - To deliver innovative systems operating over a volume of $(10 \times 10 \times 5)$ m³, to a target accuracy of 50 μ m, in industrial environments
- Two systems have been produced (prototypes)
 - InPlanT, Intersecting Planes Technique (INRIM)
 - FSI, Wide-beam Frequency Scanning Interferometry (NPL)

Optical instruments are popular

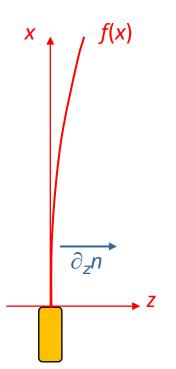

- For large dimensions, optical instruments seem to be an obvious choice. In fact the light
 - Has got no mass, and can be moved (redirected) easily over large distances
 - Travels (almost) straight
 - Travels any (indoor) distance
 - It is capable of carrying interferometric information

Two ways for using the light

- The light can be used to measure coordinates in two fundamental ways:
 - As a(n interferometric)distance meter
 - As a pointing device

Influence of the air on light: the refractive index, *n*

As a distance meter

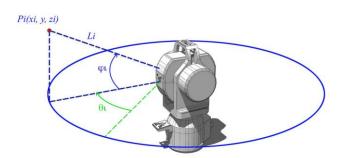

- *n* expresses the speed of light in air
- With different *n*, a same distance is covered by different numbers (and fractions) of wave cycles
- What counts is not the *n* value at any point in space, rather the integral mean over the beam path:

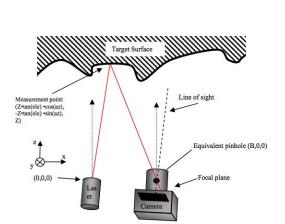
$$I_0 = nI \rightarrow I_0 = \int_I ndI \longrightarrow$$

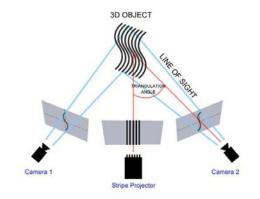
- The measured light *phase* is affected proportionally
 - If e.g. 10⁻⁶ uncertainty is sought, (at least) 10⁻⁶ must be achieved for n

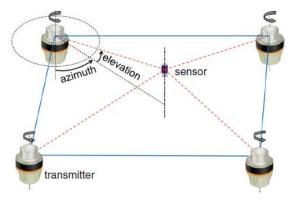
As a pointing device

- The phase is not relevant
- The light "bends" due to the a refractivity gradient normal to the path
- The resulting path is parabolic: $f''(x) = \partial_x n/n$
- With a 1×10^{-6} /m gradient (~ 1 K/m), the bending is $f(15 \text{ m}) \approx 0.1 \text{ mm}$
 - With a reasonable knowledge of the gradient (e.g. 10% uncertainty), the effect of beam bending after correction can be kept below 10 μm



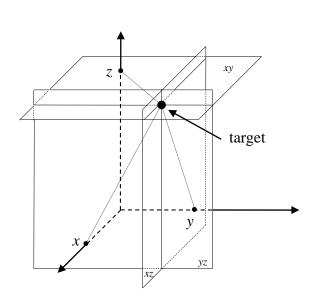

Existing pointing devices

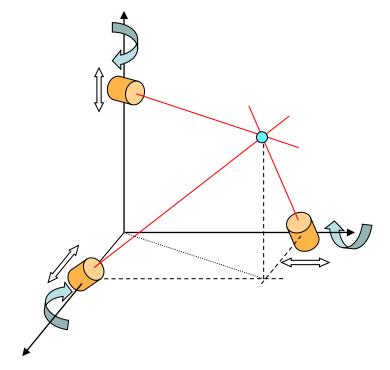



- Spherical coordinates
 - Laser trackers
- Tri- (or multi) angulation:
 - Structured light
 - Laser scanners
 - iGPS
 - Photogrammetry

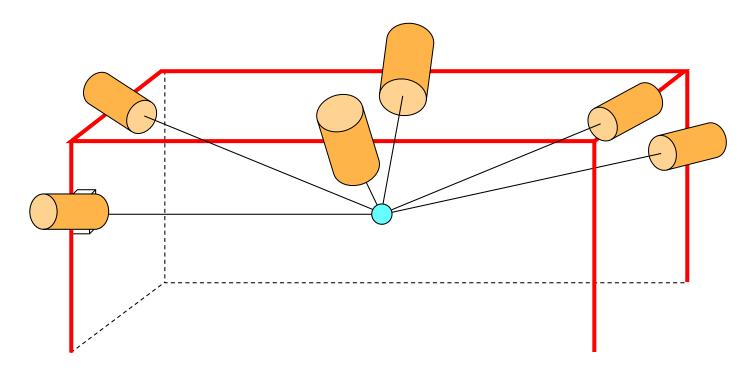
– ...

Pointing by angles: the only option?


- All these instruments
 - Point to a target by varying angles
 - These angles are measured; and possibly controlled (for tracking)
- Angles [dimensionless] alone cannot yield coordinates [lengths]; the essential link to a length is taken from
 - The interferometer/distance meter (laser trackers)
 - The mutual positions of the emitters/receivers (multiangulation, iGPS, ...), usually precalibrated based on a calibrated artefact

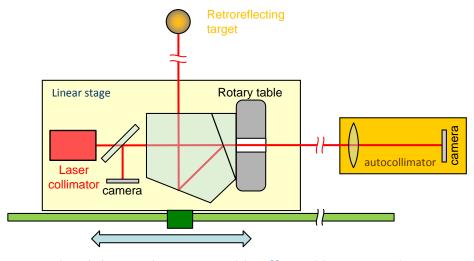

- InPlanT proposes a different option:
 - Pointing is achieved partially by angles and partially by a linear position
 - The angles are not measured, only the linear positions are

Concept of InPlanT (Intersecting Plane Technique)



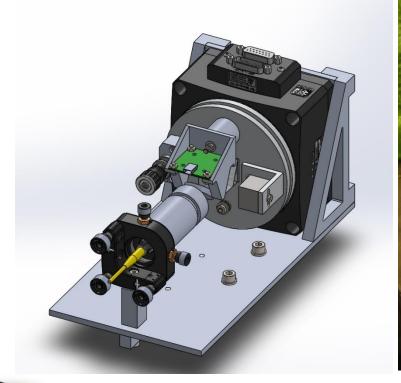
Possible redundancy

Main features of InPlanT


- Fully parallel measuring axes
 - Each measures a coordinated independently of the others (no kinematic seriality)
- Light used for pointing only; the actual measurements are
 - carried out by regular linear encoders
 - confined to the volume sides, where the environment may be not so harsh and possibly protected
- No interferometry
 - No need for measuring the refractive index of air
 - A moderate knowledge of its gradients suffices

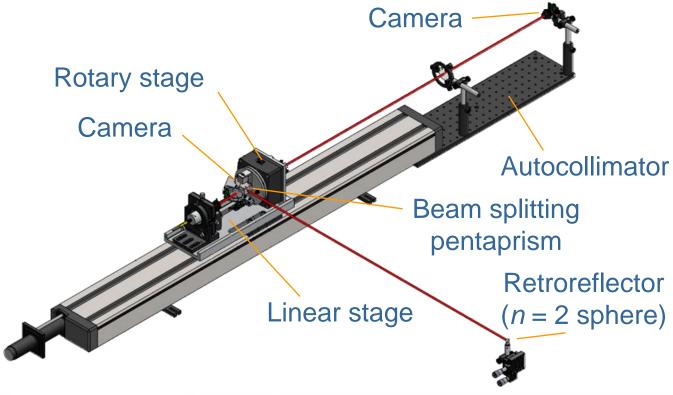
Design of each axis

- A moving linear stage carries:
 - A rotary table (RT) with rotation axis aligned to the measurement axis
 - A laser collimator (fed by a fibre, not drawn) aligned to the rotation axis
 - A pentaprism attached to the RT which deflects the beam 90° regardless of its orientation
- The beam impinges onto a retroreflecting target
- The returning beam is deflected back by the pentaprism and impinges (through a beam splitter) onto a camera
 - The camera sees the (luminous) image of the retroreflecting sphere
- The position of the sphere in the camera image drives
 - Vertically, the rotary table
 - Horizontally, the linear stage
- When the image is centred (possible residuals are compensated), the linear position is measured by a linear encoder and constitutes the sought coordinate



- The slider stroke is inevitably affected by yaw and pitch
 - To detect and correct, the pentaprism also separates the beam
 - The actual misalignment of the undeflected beam –
 and then the yaw and pitch is measured by a still
 autocollimator at the end of the stroke

Design and realisation

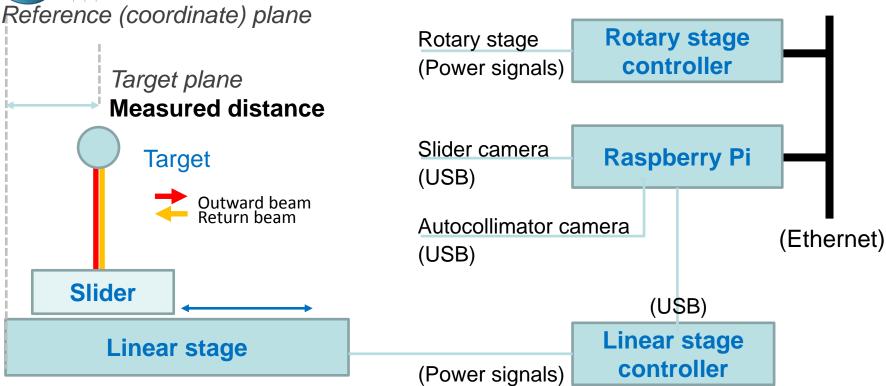


Overall design

Realised set ups

1 m stroke 2 m stroke

Limits of the prototype



- In principle, to achieve a $(10 \times 10 \times 5)$ m³ measuring volume, two 10 m and one 5 m axes are required
- Due to the budget limitation, the project prototype is limited to two axes only, with strokes of 1 m and 2 m, respectively
- Only the 2D coordinates of the projection of the target over a measuring plane can be measured at the moment, limited to an area of (1×2) m²
- However, measurements in a 3D space at full distance (e.g. at 10 m) are possible thanks to the mutual independence among axes

HW architecture

SW architecture — Raspberry PI

HTTP server interface

Camera
acquisition
Spot centre
identification

HTTP server interface

Stage control

Stage drivers

HTTP server interface

Control Loop

Network data exchange (HTTP protocol)

Web interface to monitor the system status

The retroreflecting sphere

- The target is targeted from different aiming directions
 - Wide acceptance
 - Invariance of the localisation point with these directions
- The most isotropic geometrical element is the sphere
- When a sphere is made of S-LAH79 (glass with n = 2)
 - The retroreflected beam is parallel and collimated, very much as with a cube corner
 - ... within the limits of approximation of small angles

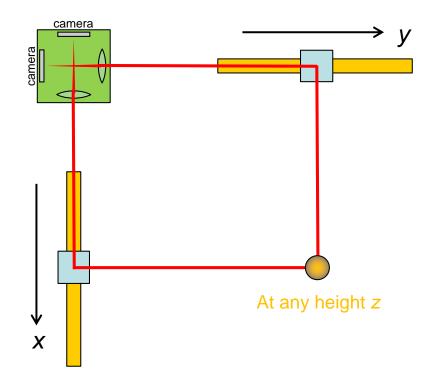
[Takatsuji et al., Meas. Sci. Technol. 10, 1999]

Images from the sphere

In lab, slightly different optical set up

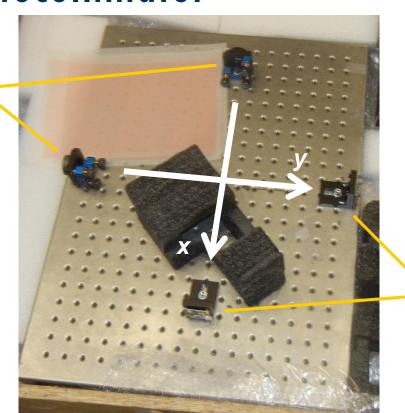
On field

The sphere images


- It is a complex optical phenomenon, not fully understood
 - Some literature exists, but not for wide beams:
 [Yang et al. Int. Workshop on Accelerator Alignment, Grenoble (FR), 1999]
- The retroreflected light accumulates at certain angles
 - resulting in concentric rings
 - The longer the distance to the target the bigger the ring sizes, and the fewer visible rings
 - A challenge for the image algorithm to compute a point localising the pattern (not necessarily the centre)

The multiple autocollimator

- The multiple autocollimator measures yaws and pitches for compensation
- Effectively, it serves as the overall InPlanT reference frame
- The two autocollimators should be set orthogonal
 - To minimise the squareness error
 - Calibrated in laboratory



Autocollimator

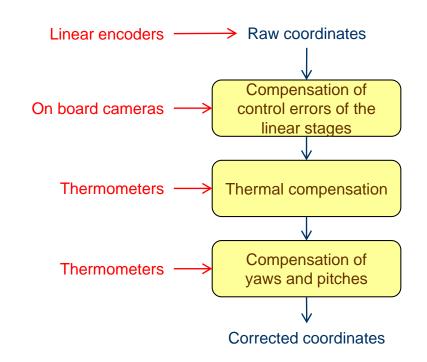
lenses

Sensitivity: 12 µrad/px

cameras

Experimental validation

- A bar with two spheres was attached to a high precision rotary table
 - Both the measuring plane and the rotation axis aligned to the vertical
- The generated positions laid on two circles
 - The rotary table assumed to be perfect
 - Any deviation from circularity attributed to the InPlanT device

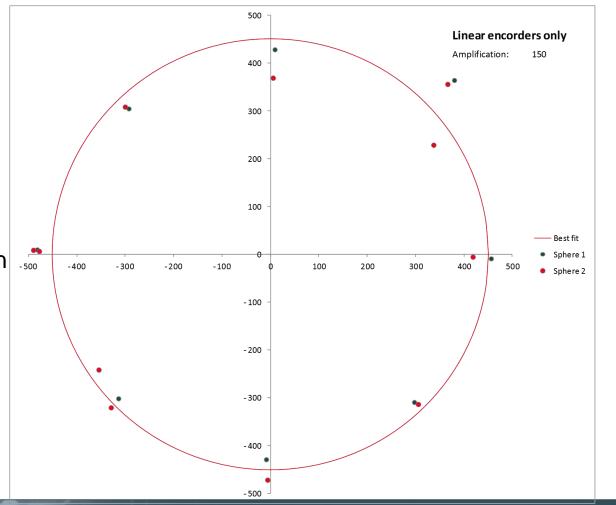


Derivation of results

• Three compensations:

- 1. Of the control error of the linear stages, by observing the displacements of the sphere images at the onboard cameras
- 2. Thermal expansion of the linear encoders
- 3. Yaws and pitches by observing the autocollimator signals

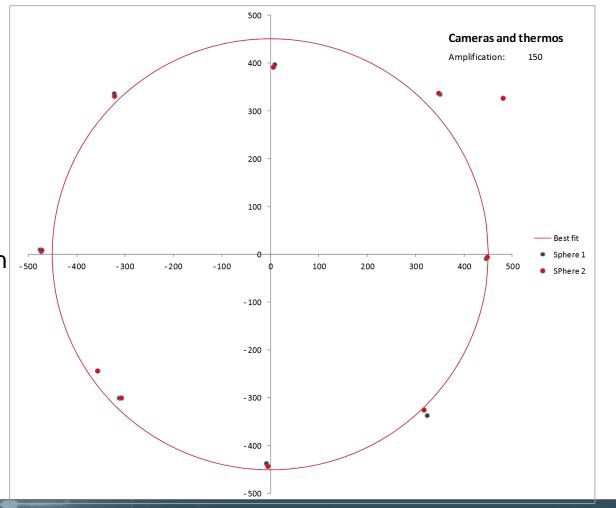
Testing conditions



Ball bar nominal length	500 mm
Rotation axis (x,y) coordinates	(450 mm, 450 mm)
No of angular positions	8+
No of points	19
No of outliers (discarded)	1
Temperature	(17.0 – 18.2) °C
Geometrical parameters to fit	(x_0, y_0, R_1, R_2) concentric fit

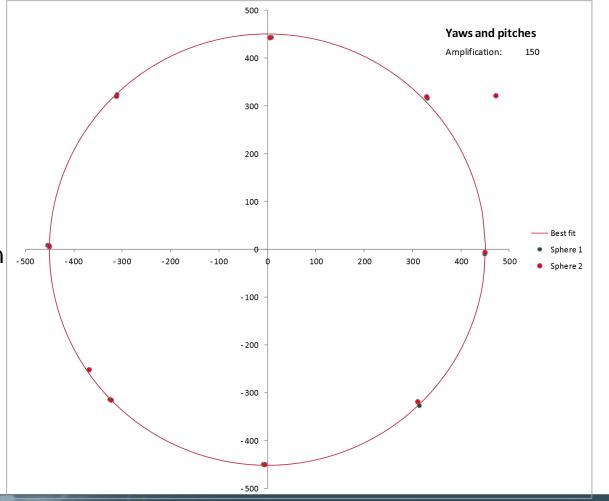
Results

Standard deviation of the fit: 276 µm



Results

Standard deviation of the fit: 196 µm



Results

Standard deviation of the fit:

45 µm

Conclusions

- An InPlanT working prototype was constructed
 - Limited to 2D and to a (1×2) m² area, but simulating 3D and $(10 \times 10 \times 5)$ m³ in full
- The principle has been successfully validated
- An error standard deviation of 45 μm was achieved in the rotary table test in harsh conditions
- Further test data are currently being evaluated