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Thermal expansion Costly or impractical to control
one of the largest temperature closely at large volume scale

contributors to
EERIGEnE]
uncertainty

Need to create a

Standard metrology method to
temperature is 20°C
compensate for
thermal effects
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Uniform and linear
scaling can produce

unrealistic results in
anisothermal
environments
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Measurement at Airbus (UK)
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Wing bending
test rig at
Airbus (UK)

Dimensional
measurements
taken on
structure with

laser tracker

Temperature
monitored on
the structure
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Measurement at Airbus (UK)
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Laser tracker
measurement

4 measured
points on
structure

Additional 7
reflectors
measured

Repeated at
regular time
Intervals
throughout
the day
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Measurement at Airbus (UK)

Temperature
; | atthe top « Temperature
| WN\ e _ monitored
| / M around
/ \/ \/ : volume
L - « 10 WiFi
ambient
I B temperature
' and humidity
Heating . ~ data loggers
switched on AN+ 10 wireless

sl N\ /ﬁ\/ﬁ M ﬁ data loggers
LN/

Temperature | |
at b OttO m Tue 12:00 Wed 00:00 Wed 12:00 Thu 00:00 Thu 12:00 Fri 00:00

— Temperature ("C) ~— Dew Point{(°C}) —— Humidity{%rh)

From: 08 March 2016 07:54:55 - To: 11 March 2016 10:13:29
UNIVERSITY OF

& BATH

COMPENSATING FOR THERMAL EFFECTS




In a solution ...

Would like to be able to know:

« “true” geometry exactly
* If subsequent operations will work
- what remedial action is required
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Measurement

Temperature:

component
environment

thermocouples
thermal imaging
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Measurement

i i 9 Omega
National National -
Instruments 8- Instruments 16- 13 Type T and 18 Wireless
Slot Data channel Type K Temperature
Acquisition Thermocouple Thermocouple Transmitters (18
Chassis Module Sensors (x0.5°C) thermocouple
channels)

» Laser tracker
* Invasive temperature
sensors
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Measurement

Position:
e points on component

e photogrammetry
* laser tracking




Photogrammetry

0.0020 mm 0.4381 mm 026281 mm 0.3982 mm 05282 mm 06583 mm

« Example photograph captured during photogrammetry
overlayed with target total deformation
» Measurement uncertainty of points: 13-40 um
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Thermal imaging

» used qualitatively to plan sensor positions
 also used guantitatively to validate finite element thermal analysis

2015-10-30
6:17 PM

2015-11-09
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Hybrid approach
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. Software and Analysis
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Physical
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Finite Element Analysis
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Test component / assembly

Barrel Section x4

@ 500 Flange Plate x2

T Section x8

M4 C/S Screw x32
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Experimental set-up

Structure assembled
using 4 barrel sections

SMR targets to
measure surface and
¢ hole positons

13 thermocouples to
measure surface
temperature

Aluminium tooling

Heating pads X8 plate

3-2-1 constraint using
3 tooling balls
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Heating profile

: 20:15
—_—pl metrology

‘Rapid Heating’ temperature
phase 20°C

Standard
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Steps of finite element analysis

- -

8 = Transient Structural 1 =

2 | @ Engineering Data == 2 @ EnginesringData
3 @ Geometry P ——m3 | @ Geometry 2
4§ Model .= 4 @ Model =
5 @ setup Z -/—05 @ setup P
6 ﬁ Solution 7 6 ﬁ Solution 7
7 9 Results 7 f @ Results 7

Transient Structural Static Structural

Temperature Thermal Structural Displacement
data analysis analysis data
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Transient thermal analysis

D: Transient Thermal

NSYS

- Transient preferable as Tl ~dilg 0 el AN 2
temperature does not d |
stabilise 34z ”. '

» Solution calculates e -

25311

temperature distribution at P
all nodes of model over time B
* More time steps =2 more
accurate prediction
« Temperature applied to
nodes nearest the sensor

position
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Structural analysis

* Normal gravity applied
Tatal Deformation i Assumes Structure IS
Type: Total Deformation
Ut perfectly level
Tirne: L )
* Solution calculates
displacement in X, Y and Z
axes at all nodes of model
» Solution also calculates total
displacement
e Support: movement in Z
constrained, X and Y free
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Deformations
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Hybrid approach

Nominal Physical
geometric model component
Thermal Metrology of
modelling component

] Load Metrology of
modelling environment

Manufacturing
tolerance errors

PREDICTION REALITY
Continuously Discrete
deformed model measured model

A y Y

—<3+— COMPARE |—3—

y

Improved Database of
deformed model models/ambient

4
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Hybrid approach

Nominal Physical cc ”. =
geometric model component TWO mOde Is . geometrIC,
physical
Thermal Metrology of
[ ] modelling ] B component
] Load Metrology of
modelling ] environment

Manufacturing
tolerance errors

PREDICTION REALITY
Continuously Discrete
deformed model measured model

A y Y

—<3— COMPARE [————

y

Improved Database of
deformed model models/ambient
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Hybrid approach

otz nore Two “models”: geometric,
physical
a Thermal | | a Metrology of
modelling component .
Physical: measure
] Load | | Metrology of
modelling environment

Manufacturing
tolerance errors

PREDICTION REALITY
Continuously Discrete
deformed model measured model

A y Y

—<3— COMPARE [————

y

Improved Database of
deformed model models/ambient
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Hybrid approach

Nominal Physical cc ”. u
geometric model component TWO mOde Is . geometrIC,
physical
Thermal Metrology of
[ ] modelling ] B component .
Physical: measure
] Load Metrology of
modelling ] environment . .
Loy Geometric: FE analysis
Manufacturing
[ tolerance errors | |
PREDICTION REALITY
Continuously Discrete
deformed model measured model

A y Y
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deformed model models/ambient
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Hybrid approach

otz nore Two “models”: geometric,
physical
a Thermal | | a Metrology of
modelling component .
Physical: measure
] Load | | Metrology of
modelling environment . .
Loy Geometric: FE analysis
Manufacturing
[ tolerance errors | |

PREDICTION REALITY
Continuously Diseete Prediction and reality
deformed model measured model

A y Y

—<3+— COMPARE |—<3—

y
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Hybrid approach

otz nore Two “models”: geometric,
physical
Thermal Metrology of
[ ] modelling ] B component .
Physical: measure
] Load | | Metrology of
modelling environment . .
Loy Geometric: FE analysis
Manufacturing
[ tolerance errors | |
PREDICTION REALITY ] - ]
Continuously Discrete Prediction and reality
deformed model measured model
A y Y
| | coMPARE | o | Comparison
Y
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Hybrid approach

otz nore Two “models”: geometric,
physical
a Thermal | | a Metrology of
modelling component .
Physical: measure
] Load | | Metrology of
modelling environment . .
Loy Geometric: FE analysis
Manufacturing
[ tolerance errors | |

PREDICTION REALITY ) - -
Continuously Discrete Prediction and reality
deformed model measured model
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Two models

Geometric/FE:

e point-based (nodes)
 large number of nodes

Measured:

* point-based
 small number of nodes
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Two models

Geometric/FE:

- point-based (no|Subject to errors due to
assumptions in modelling and

* large number off , ,merical effects in solving

Measured:

* point-based
 small number of nodes
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Two models

Geometric/FE:

- point-based (no|Subject to errors due to
assumptions in modelling and

* large number off , ,merical effects in solving

Measured:

Best information about actual

* point-based .
component (but subject to
* small number off measuring errors)
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Avoiding thermal stage in FE analysis

Can the thermal analysis stage in the FE

process be avoided?
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FE analysis

Phys model FE model FE analysis FE analysis Distorted
temp meas some temps all temps all distortions model
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FE analysis

CAD model -
geometry
Phys model FE model FE analysis FE analysis Distorted
+ +
temp meas some temps all temps all distortions model
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FE analysis

CAD model -

geometry
Phys model FE model FE analysis FE analysis o Distorted
temp meas some temps all temps all distortions model

* boundary conditions
* time stepping
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FE analysis

CAD model -
geometry
Phys model FE model FE analysis FE analysis Distorted
S — S —
temp meas some temps all temps all distortions model
Interpolate
all temps
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Temperature interpolation

* regard temperature measurement points as
forming “edges” in the body

* Interpolate along each edge

* Interpolate away from edges
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Temperature interpolation example

point z (mm) y (mm) =z (mm) 6 (°C)
tcOl 39.0 H6.4 1046.4  20.73
tc09  1039.0 56.4 1046.4 21.31
teld  1516.55 56.4 1046.4  26.23
tc04  2039.0 56.4 1046.4 43.78

50 - temperature

40/ (€63 C)
30 - /
201
10 -

distance from start point (mm)
| | | | I I I I I |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

- -s%uumn%#
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Frame example

TCO6

TCOS
b TC10

TCO7

TCO1

TCO3
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Frame example

TT“mTIT ;]ah‘\-" | TTHT@IT Tl@IM | | | | | | T{(31—T'|I}flI
| 1 TTTHITIIMTTTTI m , , r , . . mm
| | 1 11T Tﬁ | | TTTH ! Tm;m,

percentage change
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Improving FE results

Improving FE results on the basis of

measurement results
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 establish a rigid-body transform at each of the
measured points

* Interpolate these transforms over the whole
body

 for any point, transform its FE result by the
Interpolated transform
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Polyhedron: data structure

Polyhedron
* transform defined
at each node
Lumps
* Interpolate across
Faces each item of the
structure
Edges
Nodes Vertices
TOPOLOGY GEOMETRY
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Interpolation over polyhedron

S(r)=>pyinr WlLlI?p(V, r, L) S(V)

Transform
at a vertex

Sum over
vertices

Weighting
function
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Distance functions: point-to-edge example

Rt



Welighting functions
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Welighting functions
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Cuboid: twist and stretch

e cuboid is its own
polyhedron

‘\\\\\\\- back four nodes

fixed

. front four nodes

pulled forward and
twisted
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L-shaped block: twist

—+ polyhedron covers
only part of block

\- back four nodes

fixed

. other four nodes

twisted

* remaining nodes
move smoothly
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FE modelling

ANSYS

R14.5
Academic

0.00 450.00 900,00 (mm)

225.00 615.00
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Comparison example

FEA model of
deformation
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Comparison example

Extract inner
cuboid
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Comparison example
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Comparison example

Interpolate
transforms
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Conclusions

» problem of thermal/gravitational effects
when measuring

* hybrid approach: geometric model and
ohysical component

* FE to predict distortions

 can replace explicit thermal analysis with
Interpolation

 can adjust FE results so that they agree
with measured results
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