

	AEROSPACE		ADVANCED MANUFACTURING		
END USER NEED			<image/>		
	International traceability 100 laser trackers in 5 countries	Clean Skies: Laminar flow wing, weight loss Improved jig and manufacture accuracy	Factory of the future, Energy production Metrology networks, error map large tools	High value engineering Compensate thermal errors, measure fast	
	Need: calibrate/verify ADM SOA: requires intrinsic interferometer	Need: 100 μm full wing accuracy SOA: 400 μm	Need: < 100 μm SOA: 200 μm	Need: 100 μm in 15 °C to 30 °C factory SOA: 200 μm, slow photogrammetry	
IMPACT MATRIX	Frequency Scanning Interferumetry (FSI): intrinsically traceable measuring system	FSI: 50 µm accuracy	FSI: 4x better accuracy than indoor GPS (iGPS) – reference network and mapping tool	FSI: faster, 50 µm accuracy	
	2 new traceable Absolute Distance Meters (ADMs)		In situ error mapping with reference laser tracker	Portable ADM as local scale for photogrammetry	
	3D network: reduction in 3D refractive index enabling all optical tools to achieve required accuracy; turbulence mitigation; portable refractive index compensated ADM				
IMP	Advanced hybrid modelling with dimensional and thermal data fusion enables thermal compensation (currently missing) – reduced energy costs for air conditioning, s				
	FSI, new laser tracker, portable ADM, hybrid model, 3D refractive index: demonstrated in live end-user environment		New laser tracker, ADM design, FSI licensed to instrumentation manufacturers; new metrology capability: verification service at partner MG		

DISSEMINATION		IMPACT		
Exploitation	Knowledge transfer	Financial	Social	
NMI services	Stakeholder steering committee	JRP critical to laminar flow manufacturing:	Enables LHC successor (science jobs)	Es
IP licensing to Collaborators Contacts:	JRP open website 4 Major international conferences	Safeguards €2.3 trillion 2030 orders whilst complying with 2020 regulations	Enables improved beam therapies for oncology	Pe ==
Etalon AG Hexagon Metrology	8+ Journal papers Trade magazine articles	Saves money for high value components: €10k per day depreciation per aero	Maintains European advanced manufacturing advantage	==
NIL DIMENSIONAL MARKAN .	engine Inspection time reduced Reduced thermal control required	Wider uptake of Large Volume Metrology tools, leading to new applications at SMEs	In: ro Im	
	ISO, BS, VDI/VDE, UNI, ASME Metrology committees: EURAMET, CCL			

WP1 – Innovative measuring systems	CCD
3 new systems:	
 Wide beam FSI & 2. Self-illuminated photogrammetry 	PBS
Better uncertainty than photogrammetry	QWP
Faster than laser trackers	
Multiple targets	Launching
Innovative applications	(Coverage) Zone
3. Intersecting planes technique	Č
Useable in poor environments	0 n = 2

BOEING

le cnam

Large Volume Metrology in Industry

WP2 – New traceable ADMs

3 new approaches/devices:

- 1. Wide beam FSI from WP1 (traceable gas cell)
- 2. Absolute tracking interferometer (traceable iodine cell & frequency measurements)
- **3.** Portable Laser diode ADM (traceable frequency measurements)

LHC replacement at CERN 25 km tunnel, 10x better beam accuracy

> Need: 10 µm accuracy in 200 m SOA: 100 µm to 300 µm

Portable ADM and reference laser tracker to counteract stratification

OM and tracking interferometer

shorter thermalisation times

New metrology capability: new tools available at NMIs

Environmental

Estimated aviation weight benefits:

Per plane: 100 kg from JRP science

= > 1600 tonnes less CO₂ emitted p.a.

==> 1.4 M litres of fuel saved p.a.

Inspection of moulds and blades for 100 m rotors on wind turbines

Improved metrology for fusion systems

WP3 – 3D refractive index

3 solutions:

- 1. Line of sight compensation in tracking interferometer by utilising unused Nd:YAG wavelength
- 2. Second diode laser compensation in portable ADM
- **3.** 3D camera network: Dense network Dual wavelength illumination

WP4 - Multi-component modelling

Digital model of a real-world aerospace assembly Model extended to include tolerance stack-up Hybridisation to accept live

dimensional and thermal data

Optimisation for sensor placement

Best practice

WP5 – Verification and demonstration

New test facility construction & operation

Intercomparison of new tools and techniques across NMIs

Real-world measurements on site at end-user

"...we see the work here leading to a step change of the state of the art for large volume metrology ... when working with these systems in non-ideal environment ... we see ourselves benefiting from this project through the various programmes of activity within the production, test and R&T domain within Airbus..."

> Mark Summers, Head of Manufacturing Research Wing Richard Burguete, Product Domain Authority – R&T, Airbus

The University Of Sheffield. Advanced Manufacturing Research Centre BOEING

 \bigcirc

NUCLEAR AMRC

