Biomethane injection in the UK

Dave Lander

Dave Lander Consulting Limited

Overview

- Introduction Dave Lander
- UK experience of Grid Injection of biomethane
 - ► Timeline
 - Numbers of projects to date
 - Technologies generally employed
- Parties involved...
 - …and their commercial and regulatory drivers
- Measurement Risk assessment
 - Requirement of Gas Distribution Networks for all connections (conventional or nonconventional)

Overview

- Analytical challenges
 - Producer v Gas transporter
 - Cost v Accuracy
 - "Bulk" properties and contaminants
- Conclusions and discussion

Introductions

- Dave Lander
- Joined gas industry in 1974
 - British Gas Corporation
 - British gas plc
 - Lattice / Advantica
 - National Grid Transco
 - National Grid
- Left National Grid in 2008
 - Independent consultant in natural gas quality

R&D: substitute natural gas R&D: alternative uses of natural gas

- R&D: gas quality
- Policy: gas quality
 - Policy: gas quality

Introductions

- Experience
 - Natural gas quality (technical, policy, strategy)
 - Biomethane (technical, policy, strategy)
- UK representative for groups developing a number of ISO and CEN standards
 - ISO6974 analysis of natural gas
 - ISO6976 calculation of properties from composition
 - EN16726 Gas Quality
 - EN16723 Biomethane

- Timelines
 - > 2000
 - Preliminary discussions between Ofgem and Transco regarding injection of waste-derived gases, coal-bed methane and coal-associated gases;
 - Transco Ten Year Statement amended to include organohalides limit and radioactivity limits

- Timelines
 - > 2010
 - Didcot: first injection of biomethane into a UK gas distribution network
 - SGN's distribution network
 - Demonstration project aimed at assessment of issues and monitoring requirements
 - Cautious view on technology and monitoring requirements
 - Not commercially viable demonstrated technical feasibility and where savings might be made

- Timelines
 - September 2011
 - EMIB (Energy Market Issues for Biomethane) Review Group
 - Identified technical and commercial barriers to biomethane injection
 - GDN connection policies
 - GDN capacity availability
 - Technical standards for calorific value measurement (relaxation of accuracy requirements)
 - Gas quality regulation (water dew temperature, oxygen content)

Timelines

2000

- March 2013
 - ENA (Energy Networks Association) biomethane roundtable
 - Continued addressing issues identified by EMIB
 - Functional Specification for entry facilities (later to become IGEM/TD/16)
 - Gas quality monitoring according to risk assessment (GQ/8)
 - Enrichment of biomethane or blending to avoid consumer billing issues
 - Class exemption on oxygen limit within Gas Safety (Management) Regulations

2013

2016

Siloxanes projects sponsored by GDNs

- Timelines
 - May 2014
 - Commercial Renewable Heat Incentive (RHI) (originally started in 2011) extended to additional technologies, including biomethane
 - > Available for 20 years; income from RHI is not taxed

Source: CNG Services Ltd

Process routes to biomethane

Production

- Anaerobic digestion
 - Variety of feedstocks
 - Agricultural (energy) crops
 - Agricultural waste
 - Water treatment
 - Municipal waste
 - Landfill?
 - Biogas: CH₄, CO₂, inerts, contaminants
- Gasification with steam/oxygen
 - Bio-syngas: CO, H₂, inerts, contaminants

Process routes to biomethane

- Upgrading and purification
 - Anaerobic digestion
 - Upgrading removal of CO₂
 - Purification removal of contaminants
 - Gasification with steam/oxygen
 - Purification removal of contaminants
 - Upgrading (water gas shift +) methanation

Process routes to biomethane

Grid Entry

- Pressure and flow management
- Metering
- Enrichment of calorific value
 - Commercial propane
- Gas Quality monitoring
 - Measurement risk assessment
- Odorant addition
 - Imparts odour

Biogas upgrading technologies

- Removal of carbon dioxide
 - Water wash used initially
 - Solvent wash
 - Membranes
 - Pressure-swing adsorption (PSA)
- Removal of hydrogen sulphide
 - Within AD process to suppress H2S content of biogas (O2/air injection; ferric chloride)
 - Absorption systems for final H2S removal (active carbon bed)
- Removal of contaminants
 - Absorption systems (active carbon bed)

Biogas upgrading technologies

- All technologies appear to have been employed
- Each technology has advantages and disadvantages
- Competitive market is now established, so price is significant factor

Gas upgrading technologies

Based on DLC GQ/8 workshops

Parties involved

Parties involved

Commercial drivers

Commercial drivers

Measurement risk assessment

- Based on National Grid's Management Procedure T/PM/GQ/8
- Made available to and adopted by other GDNs as part of ENA biomethane roundtable
- Structured workshop to make semiquantitative assessment of measurement risks to GDN
- Recommends gas quality monitoring regime

- Biomethane projects are small scale
 - gas quality monitoring is relatively expensive
- Measurement risk assessment
 - Minimum monitoring (commensurate with legislative and commercial risk to gas transporter)

- Biomethane projects are small scale
 - gas quality monitoring is relatively expensive
- Measurement risk assessment
 - Minimum monitoring (commensurate with legislative and commercial risk to gas transporter)
- Balance of process instrumentation and off-line analysis
 - Technology, cost and accuracy

Parameter

 Calorific value, interchangeability parameters (Wobbe index, ICF, SI)

Challenge

- Cost reduction
 - Existing technology is online GC
 - Scope for inferential devices
 - Ofgem have relaxed CV accuracy requirements

Parameter

- ► Calorific value, interchangeability
- Contaminants(except H2S)

Challenge

- Cost reduction
- Risk assessment offline analysis
 - Agree and manage sampling regime
 - Online monitoring preferred by gas transporter
- Complexity range of species
 - Sulfur species
 - VOCs, higher hydrocarbons
 - Siloxanes

Siloxanes

- > DNVGL (Netherlands) report is available in the public domain
- Limits based on three appliance impact considerations were suggested
 - 0.135 mg.m⁻³ (as Si) to avoid failure of ionization probe of domestic gas appliances after 15 years operation.
 - 0.015 0.077 mg.m⁻³ (as Si) leading to 2-10% loss of thermal output from domestic gas boiler after 15 years operation
 - 10.6 mg.m⁻³ (as Si) leading to 1000 ppm mol/mol of CO in flue gas of domestic gas boiler after 15 years operation
- Loss of thermal output impacts at the lowest level
 - 7% loss corresponds to around 0.05 mg.m⁻³ (as Si)
 - However, this presents problems regarding detection...

Siloxanes

- Impacts would be seen at 0.08 mg.m⁻³ (as Si)
- Typical NEAs currently specify 0.4 mg.m⁻³ (as Si)
 - Compromise, because of typical detection limits of laboratory GC-MS systems
 - Demands that there is some mitigation by dilution with natural gas
- Online systems being assessed by NPL
 - Quoted LDLs suggest the technology may offer a promising online solution...
 - ...provided cost is acceptable

Parameter

- ► Calorific value, interchangeability
- Contaminants(except H2S)
- Water dew temperature

Challenge

- Cost reduction
- Risk assessment offline analysis
- Complexity range of species
- Agree best practice for sensorbased technology to ensure traceability

Summary of UK experience

- Financial incentives have stimulated rapid growth of biomethane projects
 - Appearance of competition for supply of key equipment and services
 - Financial viability as subsidies decrease?
- Gas quality issues are being managed...
 - Gas upgrading technologies are now readily available
 - IGEM standard for network entry facility (IGEM/TD/16)
 - Low calorific value of biomethane requires enrichment or blending
 - Enrichment cost and feasibility of blending influence viability
 - Some requirements can be mitigated by risk assessment (e.g. total sulphur, hydrocarbon dew temperature)
- Producer Gas Transporter "tension"