Dose calculation methods Mike Stabin Vanderbilt University, USA

MetroMRT 3rd Workshop "Clinical implementation of dosimetry for molecular radiotherapy" National Physical Laboratory, Teddington, UK 20-21 April 2015

$$D(r_T, T_D) = \int_0^{T_D} \dot{D}(r_T, t) dt$$

= $\sum_{r_S} \int_0^{T_D} A(r_S, t) S(r_T \leftarrow r_S, t) dt,$

MIRD

ICRP

$$S(r_T \leftarrow r_S, t) = \frac{1}{M(r_T, t)} \sum_i E_i Y_i \phi(r_T \leftarrow r_S, E_i, t)$$

$$H_{50,T} = \sum_{S} U_{S} SEE(T \leftarrow S)$$

$$k \sum_{i} n_{i} E_{i} \phi_{i} Q_{i}$$

$$SEE = \frac{k \sum_{i} n_{i} E_{i} \phi_{i} Q_{i}}{m}$$

RADAR method (Health Phys 85(3):294-310, 2003):

$D = N \times DCF$

N is the number of disintegrations that occur in a source region

DCF is the dose conversion factor, which gives the dose absorbed in a target per disintegration in a source

Concepts

- Internal dose estimates "marriage" of physical and biological quantities
- Biology distribution and kinetics

 Physics – energy deposition patterns

$$D = \left(\tilde{A} / A_0\right) DF$$

$$D = \begin{bmatrix} (\tilde{A} / A_0)_{kid} & (\tilde{A} / A_0)_{blad1} & (\tilde{A} / A_0)_{RB} \\ \\ (\tilde{A} / A_0)_{kid} & (\tilde{A} / A_0)_{blad2} & (\tilde{A} / A_0)_{RB} \end{bmatrix} X$$

 $DF(kid \leftarrow kid)$ $DF(ov \leftarrow kid)$ $DF(mar \leftarrow kid)$ $DF(test \leftarrow kid)$ $DF(blad \leftarrow kid)$ $DF(TB \leftarrow kid)$ $DF(blad \leftarrow blad)$ $DF(kid \leftarrow blad) \quad DF(ov \leftarrow blad)$ $DF(mar \leftarrow blad)$ $DF(test \leftarrow blad)$ $DF(RB \leftarrow blad)$ $DF(TB \leftarrow RB)$ $DF(kid \leftarrow RB)$ $DF(ov \leftarrow RB)$ $DF(mar \leftarrow RB)$ $DF(test \leftarrow RB)$ $DF(blad \leftarrow RB)$

$$D = \begin{bmatrix} 0.092 & 0.842 & 2.84 \\ 0.092 & 1.72 & 2.84 \end{bmatrix} \begin{bmatrix} 1.32x10^{-5} & 7.02x10^{-8} & 1.71x10^{-7} & 3.10x10^{-9} & 1.87x10^{-8} & 1.58x10^{-7} \\ 2.00x10^{-8} & 5.41x10^{-7} & 8.02x10^{-8} & 3.73x10^{-7} & 1.10x10^{-5} & 1.18x10^{-7} \\ 1.54x10^{-7} & 1.81x10^{-7} & 1.34x10^{-7} & 1.28x10^{-7} & 1.67x10^{-7} & 1.39x10^{-7} \end{bmatrix}$$

$$D = \begin{bmatrix} D_{kid_1} & D_{ov_1} & D_{mar_1} & D_{test_1} & D_{blad_1} & D_{TB_1} \\ \\ D_{kid_2} & D_{ov_2} & D_{mar_2} & D_{test_2} & D_{blad_2} & D_{TB_2} \end{bmatrix}$$

 $D = \begin{bmatrix} 5.5 x 10^{-3} & 3.5 x 10^{-3} & 1.7 x 10^{-3} & 2.4 x 10^{-3} & 3.5 x 10^{-2} & 1.8 x 10^{-3} \\ 5.5 x 10^{-3} & 5.2 x 10^{-3} & 1.9 x 10^{-3} & 3.6 x 10^{-3} & 7.0 x 10^{-2} & 2.2 x 10^{-3} \end{bmatrix}$

(units are mGy/MBq)

S OLINDA - Organ Level INternal Dose Assessment Code	
Main Input Form Nuclide Input Form Models Input Form Kinetics Input Form Help Form	
To perform Dose Calculations, you must (1) select a nuclide, (2) choose one or more body phantoms and (3) enter kinetic data, then select the DOSES button, or	
To calculate Dose Conversion Factors, (1) select a nuclide, (2) choose one or more body phantoms, then select the DFs button	
Nuclide : Model(s):	
Version 1.1, Copyright 2007 Vanderbilt University, all rights reserved.	
DOSES DFs Save Case Retrieve Case	
About OLINDA OLINDA Literature	Exit

Radiation Dose Estimates (mSv/MBq) for F-18 FDG

Biokinetic data: ICRP 106 recommended model

Physical models: RADAR ICRP 89 Reference Phantom Series

Effective doses: ICRP 103 weighting factors

		Males				
	Adult	15-yo	10-yo	5-yo	1-yo	
Adrenals	1.35E-02	1.73E-02	2.57E-02	4.07E-02	7.06E-02	
Brain	3.56E-02	3.65E-02	3.79E-02	4.21E-02	5.79E-02	
Breasts	7.01E-03	8.95E-03				
Esophagus	1.28E-02	1.63E-02	2.61E-02	4.21E-02	7.73E-02	
Eyes	1.03E-02	1.26E-02	1.88E-02	2.94E-02	5.14E-02	
Gallbladder Wall	1.42E-02	1.70E-02	2.56E-02	3.77E-02	6.46E-02	
Left colon	1.15E-02	1.35E-02	2.23E-02	3.44E-02	6.01E-02	
Small Intestine	1.24E-02	1.55E-02	2.49E-02	3.89E-02	6.78E-02	
Stomach Wall	1.25E-02	1.55E-02	2.37E-02	3.71E-02	6.44E-02	
Right colon	1.18E-02	1.45E-02	2.26E-02	3.55E-02	6.16E-02	
Rectum	1.58E-02	1.90E-02	3.26E-02	4.80E-02	7.42E-02	
Heart Wall	6.35E-02	8.73E-02	1.40E-01	2.24E-01	3.79E-01	
Kidneys	2.05E-02	2.53E-02	3.49E-02	5.54E-02	8.76E-02	
Liver	2.21E-02	2.92E-02	4.28E-02	6.19E-02	1.03E-01	
Lungs	1.76E-02	2.29E-02	3.74E-02	5.92E-02	1.12E-01	
Pancreas	1.28E-02	1.62E-02	2.52E-02	3.94E-02	7.12E-02	
Prostate	1.83E-02	2.21E-02	5.51E-02	4.97E-02	6.97E-02	
Salivary Glands	1.14E-02	1.42E-02	2.17E-02	3.35E-02	5.88E-02	
Red Marrow	9.75E-03	1.47E-02	2.23E-02	3.08E-02	5.48E-02	
Osteogenic Cells	1.53E-02	2.07E-02	3.17E-02	4.51E-02	8.58E-02	
Spleen	1.05E-02	1.34E-02	2.07E-02	3.39E-02	6.03E-02	
Testes	1.02E-02	1.29E-02	2.44E-02	3.11E-02	5.54E-02	
Thymus	1.33E-02	1.72E-02	2.48E-02	4.01E-02	7.07E-02	
Thyroid	1.01E-02	1.29E-02	2.08E-02	3.39E-02	6.18E-02	
Urinary Bladder Wall	1.36E-01	1.69E-01	2.55E-01	3.47E-01	4.62E-01	
Effective Doses	1.73E-02	2.21E-02	3.26E-02	4.76E-02	7.83E-02	

📥 Input Data:

Phantom organ masses (g) for the Adult Male

Next Phantom

Provinue.	Phantom
E EUIIIS	Englishi

	1
16.3	Adrenals
1420.0	Brain
351.0	Breasts
10.5	Gallbladder Wall
167.0	LLI Wall
677.0	Small Intestine
158.0	Stomach Wall
220.0	ULI Wall
316.0	Heart Wall
299.0	Kidneys
1910.0	Liver
1000.0	Lungs
28000.0	Muscle
8.71	Ovaries
Alpha Weight Factor	Beta Weight Fact
5.0	1.0
Multiply all masses by:	1.0

** = Modified by user

Hit <ret> to see changes immediately, or just DONE at end

94.3	Pancreas
1120.0	Red Marrow
120.0	Osteogenic Cells
3010.0	Skin
183.0	Spleen
39.1	Testes
20.9	Thymus
20.7	Thyroid
47.6	Urinary Bladder Wall
79.0	Uterus
0.0	Fetus
0.0	Placenta
73700.0	Total Body

ht Factor	Beta Weight Factor	Photon Weight Factor	
	1.0	1.0	Reset organ values
masses by:	1.0		DONE

Organ Mass Scaling

• For electrons, the scaling is:

$$DF_2 = DF_1 \frac{m_1}{m_2}$$

• For photons, the scaling is:

$$\phi_2 = \phi_1 \left(\frac{m_2}{m_1}\right)^{1/3} \qquad \Phi_2 = \Phi_1 \left(\frac{m_1}{m_2}\right)^{2/3}$$

Patient-Individualized Medicine

The Case for Patient-Specific Dosimetry in Radionuclide Therapy

CANCER BIOTHERAPY & RADIOPHARMACEUTICALS Volume 23, Number 3, 2008

Treating all nuclear medicine patients with a single, uniform method of activity administration amounts to <u>consciously</u> <u>choosing that these patients be treated</u> <u>with a lower standard of care</u> than patients who receive radiation externally for cancer treatments."

Dosimetry

- Administration of 500 MBq of I-131
- Thyroid uptake 55% at 24 hours
- Uptake half-time 6 hours, elimination halftime 7 days:

$$A_{thy} = 500 \ MBq \left(\frac{10^6 \ dis}{MBq - s}\right) \times 0.55 \times \left(\exp^{\frac{-0.693 \times 24h}{168h}} - \exp^{\frac{-0.693 \times 24h}{6h}}\right)$$
$$N_{thy} = 2.75 \times 10^8 \ \frac{dis}{\sec} \left(\frac{1}{0.004125 \ h^{-1}} - \frac{1}{0.1125 \ h^{-1}}\right) \left(\frac{3600 \ s}{h}\right) = 2.31 \times 10^{14} \ dis$$

Dosimetry

 Contributions from other electrons and photons, estimate becomes ~430 Gy.

Patient-Specific Modifications

 Traino, DiMartino et al. – adjustment for change in thyroid mass during dose delivery

$$D_{T} = \frac{\sigma A_{m} T}{2m_{0}} + \frac{\sigma}{k} \left[m_{0} - \left(m_{0}^{2} - \frac{2kA_{m}}{c} \right)^{\frac{1}{2}} \right]$$

Patient-Individualized Medicine

- Using a fixed activity or activity/body size gives very different therapeutic benefit to different patients.
- Individual kinetics and body morphologies are highly variable.

Cumulative excretion of Ho-166 DOTMP in twelve subjects (6 **Q**, 6 **d**) with multiple myeloma. Breitz et al. J Nucl Med 2006

Wahl, J Nucl Med 2005; 46:128S–140S

FIGURE 3. Total absorbed dose to bone marrow of 200 patients for a single therapy cycle.

Sandstrom et al. JNM 2013:54:33-41

FIGURE 7. Maximum tolerable number of cycles with respect to absorbed doses to bone marrow and kidneys for 200 patients.

TABLE 2

Recent Physical Phantom Evaluations of SPECT Quantification of Radionuclides Relevant to Internal Radionuclide Therapy as Well as ^{99m}Tc

Study	Radionuclide	System	Reconstruction	Absolute quantification accuracy
Zeintl et al., 2010 (<i>18</i>)	^{99m} Tc	SPECT/CT	OS-EM, CDR, CT-derived AC, energy window-based SC, PVC	<6.8% error for 0.5- to 16-mL spheres
Dewaraja et al., 2010 (37)	131	SPECT/CT	OS-EM, CDR, CT-derived AC, energy window-based SC	<17% error for 8- to 95-mL spheres; 31% for 4-mL sphere
Assie et al., 2010 (23)	111ln	SPECT and CT separate	OS-EM, CT-derived AC, energy window-based SC, PVC	<20% error for organs and 2- to 32-mL spheres; 48% error for 0.5-mL sphere
Shcherbinin et al., 2008 (49)	^{99m} Tc, ¹¹¹ In, ¹²³ I, ¹³¹ I	SPECT/CT	OS-EM, CDR, CT-derived AC, analytic scatter modeling	3%–5% error for 32-mL bottles
Minarik et al., 2008 (95)	90Y	SPECT/CT	OS-EM, CDR, CT-derived AC, ESSE	<11% error for liver and 100-mL sphere
Willowson et al., 2008 (19)	^{99m} Tc	SPECT/CT	OS-EM, CT-derived AC, transmission-dependent SC, PVC	<4% error for liver and cardiac chambers
de Wit et al., 2006 (59)	¹⁶⁶ Ho	SPECT	OS-EM, CDR, ¹⁵³ Gd transmission source-derived AC, Monte Carlo scatter modeling	16% average error for 220-mL bottles
Du et al., 2006 (62)	123	SPECT/CT	OS-EM, CDR, CT-derived AC, ESSE, PVC	<2% error for putamen and caudate regions of brain phantom
He at al, 2005 (52)	111ln	SPECT/CT	OS-EM, CDR, CT-derived AC, ESSE, PVC	<12% error for organs and 8- to 23-mL spheres
Koral et al., 2005 (50)	131	SPECT and CT separate	OS-EM, CDR, CT-derived AC, energy window-based SC, PVC	<7% average error for 100-mL sphere

AC = attenuation correction; SC = scatter correction.

Dewaraja et al. J Nucl Med 2005; 46:840-849

FIGURE 3. (A) Summed coronal ¹²⁴I PET image slices obtained on day of ¹²⁴I administration (day 0) and on subsequent 2 days are depicted using same intensity level. Cross-hairs show plane of intersection for corresponding transverse slices through tumor 2, shown immediately below coronal images. (B) Image of absorbed dose distribution in tumor 2, magnified to highlight spatial distribution of absorbed dose within this tumor. Color-coded isodose contours are superimposed as follows: yellow = 75%, red = 50%, blue = 25%, and green = 10% of maximum absorbed dose to tumor (400 Gy). Three different foci of enhanced absorbed dose are observed and designated 1–3 as shown. Kolbert et al. J Nucl Med Vol. 45 No. 8 1366-1372.

FIG. 7. Calculated dose distribution after administration of ¹³¹I-MIBG superimposed on axial CT scan.

FIG. 8. Differential dose volume histogram for normal liver and metastasis of the case presented in this study.

Strigari *et al.*: Tumor control probability in systemic radiotherapy Medical Physics, Vol. 33, No. 6, June 2006

Bodey et al. 2003

STRATOS Dosimetry Solution is an advanced research software package for 3dimensional dose calculation in nuclear medicine, allowing you to calculate and visualize patient-specific dose maps for targeted therapeutic radionuclide agents based on antibodies or peptides. STRATOS Dosimetry Solution optimally supports research focussed on image-based dosimetry using SPECT/CT and PET/CT data.

Dieudonne J Nucl Med 2013; 54:236–243

Ferrari et al. Eur J Nucl Med Mol Imaging (2012) 39:1702–1711

FIGURE 2. Axial (A), coronal (B), and sagittal (C) views of isodose curves superimposed on patient-specific voxel phantom obtained for evaluation E3 with an injected activity of 1 GBq. LL = left lung; RL = right lung.

FIGURE 3. DVHs for RL, LL, NTL, and TL obtained for evaluation E3 (A), E10 (B), and E11 (C) with an injected activity of 1 GBq. LL = left lung; RL = right lung.

Petitguillaume et al. JNM 2014; 55:405-413

Senthamizhchelvan et al. JNM 2012; 53:215-224

Dieudonne et al. JNM 2011:52:1930-1937

Figure IV.2: Modification of NURBS surface by moving control points. (a) NURBS representation of a plane with controls points (*) aligned on the surface. (b) Surface with shaped altered by translating two of the center control points in the z-axis.

Figure IV.11: Overlap of lungs at base before deforming structures to match patient (a) and after modification (b). The white area is the left diaphragm that is voxelized as body and replaced by other organs including spleen (red), stomach and heart (pink).

Figure V.1: Fused SPECT/CT images for (a) Patient 1 and (b) Patient 2 with matching 3D dose maps overlaid on CT for (c) Patient 1 and (d) Patient 2. The dose maps are displayed in units of Gy.

Do Calculated Doses Predict Biological Effects?

Amro et al. J Nucl Med 2010; 51:654-659

Shen et al. JNM 43 No. 9 1245-1253, 2002

Figure 7. Plot from Barone et al.⁵¹ showing prediction of kidney toxicity from patient-individualized dose calculations in the use of ⁹⁰Y (DOTATOC). (Larger and smaller dots on the plot were used to indicate the number of treatment cycles received by different patients.) Reprinted with permission of the Society of Nuclear Medicine.

Dose rates and renal toxicity

TABLE 2 Comparisons of Absorbed Doses and Dose Rates to Kidneys with Radionuclide Therapies						
Therapy	N _{frac}	A (GBq)	D (Gy)	R ₀ (Gy/h)	RE	BED (Gy)
90Y-DOTA-octreotide	3	13.3	27	0.15	1.2	32
111 In-DTPA-octreotide	8	83	34	0.07	1.1	37
¹⁷⁷ Lu-DOTA-octreotate	4	29.6	26	0.04	1.1	29
¹⁶⁶ Ho-DOTMP	1	167	7.5-15	4.2-8.4	2.4-3.7	18.0-55.5
External-beam irradiation	16	NA	23	NA	1.6	37
Total-body irradiation	6	NA	12	NA	1.8	22

% CLR loss versus BED (open circles/dashed line) or TDF (solid circles/solid line) for the combined Barone and Bodei data sets. (A) All patients. (B) All patients without risk factors. (C) All patients with risk factors.

PFS Stratified by Tumor Dose

- Longer PFS for mean tumor absorbed dose
 >200 cGy
- Median PFS
 - 13.6 mo (>200 cGy)
 - 1.9 mo (<200 cGy)

Philosophical Point

- When is a Gy a Gy? Almost never!
- I Gy of gamma whole body...
- 1 Gy of alpha?
- 1 Gy of beta or gamma in therapy?

$$BED = D\left(1 + \frac{d}{\alpha/\beta}\right) \qquad mEUD = \frac{\left(\sum_{i=1}^{N} v_i \cdot BED_i^a\right)^{1/a}}{C}$$

- Medium transfer bystander effects? Dose is zero!
- $0 \otimes \text{anything} = 0$

Bystander effect shown by Hall²⁰ in V79 cells in which all cells or 10% of cells were struck by 1-16 alpha particles.

Sawant et al. Radiation Research, 156, 177–180 (2001)

Mairs RJ, Fullerton NE, Zalutsky MR, Boyd M. Targeted radiotherapy: microgray doses and the bystander effect. Dose-Response, 5:204–213, 2007.

* Freeze-defrost 3 times

Kassis - HMS - Boston

Conlusions

- Whole organ dosimetry methods are well standardized.
- With mass adjustment, this may suffice for some applications.
- 3D dosimetry methods have been demonstrated by many centers. Quantitative SPECT and PET have good accuracy when done correctly.
- Our understanding of dosimetric quantities is undergoing change. Collaboration is vital.