

# **Erasmus Experience**

# <sup>177</sup>Lu-DOTA-octreotate PRRT

#### Mark Konijnenberg Erasmus MC, Rotterdam, Netherlands

*METRO/MRT meeting* 2015, NPL, Teddington

#### Leading questions ?

- 1. For which MRT procedure dosimetry is used?
- 2. Is the dosimetry for patient management, or for research?
- Which scans, what times, activity-time integration, what method of dose calculation, how is the result presented? (mean, maximum, DVH, etc.)
- 4. How are the measurements calibrated ?
- 5. What accuracy validations have been done?
- 6. Estimate of the uncertainty in dose measurements?
- 7. Do you think that the dosimetry you are doing could be incorporated in MRT treatment planning on individual patients and be used for personalised treatments?

#### **Simple answers**

- 1. We stopped doing dosimetry for <sup>177</sup>Lu-DOTA-octreotate therapy
- 2. Dosimetry was performed routinely for research on tox response
- 3. Planar, 3 time points (24, 96 and 168 h) leading to mean dose
- 4. Calibration is based on phantom acquisitions
- 5. No accuracy validations
- 6. Uncertainty in dosimetry in the order of 50%
- 7. We really have to better ....



## Dosimetry for 4 x 7.4 GBq <sup>177</sup>Lu-DOTA-octreotate

- Absorbed doses to critical organs:
  - Kidneys (N=408): 21 ± 7 Gy
  - Bone marrow (N=27): **1.5 ± 1,1 Gy**
  - Spleen (N=36):

 $\mathbf{37} \pm \mathbf{17} \; \mathbf{Gy}$ 

- No organ volume correction
- Planar conjugate view
- Absorbed dose to target volumes:
  - Tumours (N=7):

#### 207 (17 – 387 Gy)

- Still only 40% of patients show complete or partial response
- Overall dosimetry question:
- Is fixed activity optimal?

Planar-based dosimetry <sup>177</sup>Lu-DOTA-octreotate

- Planar imaging γ-camera
  - Geometric mean uptake
    √ant × post
  - Kinetics:

■ 1, 3 en 7 days ■ Renal clearance:  $T_{eff} = 61 \pm 12$  h Go/No Go 4<sup>th</sup> therapy cycle 7.4GBq based on ■ Total dose ≤ 23 Gy



#### No dosimetry possible in 1/3 of the patient group







- Overlapping activity in tumour lesions
- High uptake in liver
- 207 / 615 (34%) patients without dosimetry

Erasmus MC Zafung

#### Kidney dosimetry Erasmus MC, Rotterdam

- Planar dosimetry in
  - 408 / 615 patients
  - 23 Gy dose limit
  - 99 stopped at 22 GBq
- Mean absorbed dose per administered activity
   0.71 ± 0.22 Gy/GBq
- Mean cumulative absorbed dose for complete therapy
   19 ± 5 Gy



#### **Biologic Effective Dose kidneys** <sup>177</sup>Lu-DOTA-octreotate



- Mean BED: 21 ± 6 Gy (5 38 Gy)
- Mean effective half-life:  $T_{eff} = 61 \pm 12$  h

#### Absorbed doses in 188 patients with > 1 year follow-up



#### 152 Patients with dosimetry

- Follow-up: 2.5 year (1.1 7.5 year)
- Mean absorbed dose to the kidneys: 20 ± 4 Gy
- Mean BED to the kidneys: 21 ± 6 Gy
- 36 Patients without dosimetry:

Follow-up: 2.1 jaar (1.0 – 5.9 jaar)



#### Late kidney toxicity after <sup>177</sup>Lu-DOTA-octreotate therapy

- Decrease in creatinine clearance
  - Limit > 20% / year
- 7 Patients in total (7/188 = 4%)
  - 5 / 152 in the dosimetry group
  - 2 / 36 without dosimetry
- 5/7 Patients with multiple risk factors for kidney problems
  - Age (58-79 y)
  - High blood pressure
  - Diabetes
  - Atherosclerosis
- All patients (still) do not show severe serum creatinine toxicity (< grade 3)</li>



### No evidence found for a dose-effect relation for renal toxicity



# No evidence for different toxicity profile for patients restricted by dosimetry and those without dosimetry



 Kidney dosimetry for <sup>177</sup>Lu-DOTA-octreotate is not necessary in fixed dosing scheme of 4 x 7,4 GBq with amino-acids.

#### Or evidence for bad dosimetry (volume correction)





Biologically Effective Dose to the kidneys (Gy)





# Kidney volumes determined in 28 retreated patients

- Female (N=16):
  - Mean volume 298  $\pm$  70 ml
  - 5 volumes < 275 ml
  - Mean dose at 44.4 GBq:
    - MIRD:  $27 \pm 6$  Gy
    - Vol Cor: 27  $\pm$  6 Gy
- Male (N=12):
  - Mean volume  $366 \pm 89$  ml
  - 2 volumes < 299 ml
  - Mean dose at 44.4 GBq:
    - MIRD:  $27 \pm 6$  Gy
    - Vol Cor:  $24 \pm 6$  Gy
- Mean volume correction factor:
  - $0.93 \pm 0.26 \ (0.6 1.5)$



# Hematological toxicity after <sup>177</sup>Lu-DOTA-octreotate PRRT



- 35 Acute toxicity
  - 24 Therapy related: 8%
  - Mostly thrombocytopenia

- 8 late toxicity (2%) after 0.5 5 year
  - MDS/Leukemia (N=5)
  - Cytopenia (N=3)



#### Multiple types of grade 3 and 4 bone marrow toxicity





۱C سې

#### Plasma & urine clearance <sup>177</sup>Lu-DOTA-octreotate (N=30)



• Plasma clearance: 91% with  $T_{1/2}$ : 24 min and 8% with  $T_{1/2}$ : 5 h

- Urinary clearance: 69% with T<sub>1/2</sub>: 3 uur
  - 2,6 GBq <sup>177</sup>Lu (35%IA) in urine at 3 h

#### Bone Marrow dosimetry for <sup>177</sup>Lu-DOTA-octreotate (N=29)

- Absorbed dose in red marrow:
  - 34% by self-dose (blood)
  - 50% by total body (1 urine)
  - 14% by organs (γ-camera)
- No correlation between dose and platelet decrease after 3.7 GBq
- Cumulative red marrow dose
  - 0.66 Gy (0.1 4.1 Gy)
  - 5 patients (17%) > 2 Gy
- Dose for fixed dosing 29.6 GBq
  - 1.5 ± 1.1 Gy
  - 9 patients (31%) > 2 Gy





Platelet: R<sup>2</sup> =0.35

White blood cells:  $R^2 = 0.49$ 

grade

#### Risk factors for hematologic toxicity after <sup>177</sup>Lu PRRT

|                                      | Step-forward |         | Step-backward |         |     |                   |  |
|--------------------------------------|--------------|---------|---------------|---------|-----|-------------------|--|
| Variable                             | Coefficient  | p-value | Coefficient   | p-value | _ 7 | LOGISTIC          |  |
| Any toxicity (Hb/PLT/WBC             | )            |         |               |         |     | rearession        |  |
| Cockcroft*                           | -0,160       | 0,028   | -0,150        | 0,044   |     | regreeserr        |  |
| Bonemetastasis                       | 1,055        | 0,017   | 0,912         | 0,056   |     | analysis of grade |  |
| WBC < 4.0 at baseline*               | 1,828        | 0,005   | 1,741         | 0,011   |     |                   |  |
| Tumoruptake on Octreoscan ≥ Kidneys  | 0,867        | 0,051   | 1,055         | 0,023   |     | 3+4 toxicity in   |  |
| Previous radiotherapy                | -            |         | 1,225         | 0,074   |     |                   |  |
| Previous chemotherapy                | -            |         | -1,171        | 0,161   | . 5 | 34 out of 320     |  |
| Hemoglobir                           | ו            |         |               |         |     | nationte          |  |
| Age > 70 years*                      | 1,698        | 0,045   | 1,860         | 0,039   |     | patients          |  |
| Extensive tumor mass*                | 2,551        | 0,002   | 2,570         | 0,003   |     |                   |  |
| Previous radiotherapy                | -            |         | 2,165         | 0,036   | . 1 |                   |  |
| Platelet                             | S            |         |               |         |     | Kidney function   |  |
| Cockcroft*                           | -0,022       | 0,010   | -0,025        | 0,008   |     |                   |  |
| Bonemetastasis                       | 1,268        | 0,009   | -             |         |     | WBC count         |  |
| WBC < 4.0 at baseline                | 1,731        | 0,016   | 1,565         | 0,196   |     | WBC COdin         |  |
| Extensive tumor mass                 | -            |         | 1,174         | 0,024   |     |                   |  |
| Previous radiotherapy                | -            |         | 1,392         | 0,055   |     |                   |  |
| Previous chemotherapy                | -            |         | -1,604        | 0,144   |     | Rone mets         |  |
| White Blood Cells                    | s            |         |               |         |     | Done mets         |  |
| Age > 70 years                       |              |         | 1,161         | 0,062   |     |                   |  |
| WBC < 4.0 at baseline*               | 2,436        | 0,001   | 2,531         | 0,000   |     |                   |  |
| Tumoruptake on Octreoscan > Kidneys* | 1,321        | 0,022   | 1,549         | 0,010   |     | Erasmus MC        |  |
| Previous radiotherapy                | 1,363        | 0,068   | -             |         |     | Zalung            |  |

#### Spleen dosimetry for 44GBq <sup>177</sup>Lu-DOTA-octreotate (N=35)

- Absorbed dose spleen after retreatment 52 Gy (25 – 115)
- 25% volume reduction after Tx1
- **35%** volume reduction after Tx2  $\bullet$
- **NTCP** model for serious • reduction in spleen volume
  - Threshold at TD<sub>5</sub> = 13 Gy and 50% at  $TD_{50} = 66 Gy$
- No clinical signs for malfunctioning spleen
  - Lymphocytes drop



Spleeen volume reduction after therapy  $\delta V$ 



Do you think that the dosimetry you are doing could be incorporated in MRT treatment planning on individual patients and be used for personalised treatments?

#### **Bone marrow dosimetry**

- Image based
- Additional early time-point
  - Voiding (AA infusion)
- Functional imaging of individual red marrow

#### **Kidney dosimetry**

- Spect/CT + planar combination
- Volume correction
- Dose escalation study to determine actual dose limit
- Derive  $\alpha/\beta$ , repair T<sub>1/2</sub> and BED, specific for <sup>177</sup>Lu

**Erasmus** MC

#### Conclusie dosimetry for <sup>177</sup>Lu-DOTA-octreotate PRRT

- With fixed dosing scheme ( $4 \times 7.4$  GBq) with amino-acids
  - Absorbed dose of 21  $\pm$  7 Gy to the kidneys
  - Hardly cases of renal toxicity
  - No difference in toxicity dosimetry and no-dosimetry
- Heamatological toxicity (10%) seems more a problem
  - No correlation between Red Marrow dose and toxicity
- The therapy might be sub-optimal.....
  - Dosimetry based treatment planning based on image-derived bone marrow (and kidney) dosimetry

Erasmus MC Cafmo

#### **Thank You!**

#### Acknowledgements Erasmus MC Rotterdam

- Dik Kwekkeboom
- Marion de Jong
- Hendrik Bergsma
- Wouter van der Zwan
- Roelf Valkema
- Eric Krenning



# ...and the patients treated with PRRT