

Nantes clinical dosimetric experience

L.Ferrer, ICO René Gauducheau Medical physics department

CENTRE HOSPITALIER UNIVERSITAIRE DE NANTES

T. Carlier H.Necib N.Varmenot

F. Kraeber-Bodere C. Bodet-Milin C.Rousseau

A.Faivre-Chauvet JF. Gestin

University Hospital

RIT/Pre-targeted RIT

- Epratuzumab, Ibritumomab
- Anti—CD22, Anti—CD20
- Hematological deseases: Lymphoma, Myeloma
 - ¹¹¹In/⁹⁰Y

- Solid tumours
 - ¹³¹I, ^{III}In/¹⁷⁷Lu

Anti—Carcinoembrionic antigen (CEA)

Image quantification

- 2D: "old fashion", not so quite reliable, intrinsic limitations, organ level
- 2.5D: more reliable (?), CT scan, organ segmentation, organ level,
- 3D: more reliable (in principle) approach, CT scan, limited to 2-3 axial FOV (?), voxel/organ level

Imaging protocol

SPECT/CT

- CT Low dose whole body (WB) scan
 - Attenuation map, organ volume
- **4-5 WB emission scans** : D0, D1, D2, D5, D7
 - various sweeping speed: 1-1.6 mm/sec, HEAP or MEAP, Photoelectric + 2 adjacent windows
- 4-5 SPECT/CT scans : D0, D1, D2, D5, D7 if feasible
 - Abdomen-pelvis
 - 128x128, 2x32 projections, HEAP or MEAP, 30-45s, Photoelectric + 2 adjacent windows

2D approach

• conjugated views :

• Planar images : anterior and posterior

 $C_A \cdot C_B$ $\eta \cdot e^{-\int_0^L \frac{\mu(l)}{2} dl}$

Whole body (WB) TAC

2D correction

WB CT TAC

Organ overlapping

segmented projections

○ ○ Rein. ● ○ ○ ReinC 565.76×2263.04 565.76×2263.04

XOR mask

Background ROIs

2D

backgound (BDF)

P. Yushkevich Neuroimage 2006 Jul 1;31(3):1116-28

region of interest

organ overlapping

2.5D approach

attenuation, PRF

He B Phys Med Biol. 2006 Aug 21;51(16):3967-81.

diffusion: TEW

Tomographic Reconstructions

- Iterative reconstruction (OSEM)
 - Corrections
 - Attenuation
 - PRF (w/wo septal penetration),
 - Compton scattering
 - # iterations

Some corrections included in vendors software

FIGURE 3. Measurement of RCs discussed in patient example 1. (A) Phantom set-up. (B) SPECT/CT image. (C) RC as function of OSEM iteration number. (D) RC as function of volume at 35 iterations. RCs that were determined with commercial OSEM reconstruction are also shown.

Tomographic Reconstructions

Sensitivity factor

- Known (?) activity source
- 2D
 - in air

- point (or flat disc) ~ weak diffusion/attenuation
- 3D
 - in air if you're confident in implemented corrections & reconstruction software

- Scattering test-object to mimic patient
 - same reconstruction parametres as clinic practice (or vis-versa)

Validation: eg ¹¹¹In

- ¹¹¹In (172 keV, 245 keV)
- Liqui-FilTM:
 - Tank (25,2 MBq), Liver (21 MBq), Spleen (1,5 MBq), R Kidney (0,9 MBq), L kidney (1,0 MBq)
- SPECT/CT (Millenium VG) : 156 keV(4%), 172 (14%), 205 (4%), 245 (14%)
- CT (Discovery LS) : 512², 120 kV, 90 mA, ep.=5mm, Δz=5mm
- Activity organ quantification: 2D, 2,5D et 3D

Validation

_								
		Tank	Liver	Spleen	R. K.			
	MBq	25.2	20.9	Ι.5	0.9			
			MBq (Z	MBq (Δ%)				
	2D	24. I (4)	20.9(0)	I.I(24)	0.4(5I)			
	2.5D	27.4(-9)	23.9(-14)	I.4(4)	0.6(31)			
	3D	27.4(-9)	19.9(5)	1.3(13)	0.8(11)			

I.4(-39) 0.9(5) 0.9(10)

L. K. I.0

Recent clinical applications

Lung cancer and anti-CEA pretargeting

- o Lung Cancer represents is the most common cause of cancer death worldwide.
- o Despite the development of targeted therapies, prognosis of advanced or relapsed forms remains poor.
- o More than 50% of lung cancer shows carcinoembryonic antigen (CEA) expression.
- Our team obtained promising results obtained using anti-CEA bispecific antibody and radio-labeled hapten for radioimmunotherapy (RIT) in metastatic medullary thyroid cancer patients.

Design

Three cohorts of 3 patients were studied

S1: Pre-therapy imaging study					S2: Therapy study		
	TF2 dose	delay	111In-	1	TF2 dose	Interval	177Lu-IMP
			IMP	/			
Cohort	7 mg/m2	48h	185 MBq	2	37.5 mg/m2	48h	1.1 GBq/m2
1							
Cohort	14 mg/	48h	185 MBq	W	75 mg/m2	48h	1.1 GBq/m2
2	m2		-	E			
Cohort	14 mg/	24h	185 MBq	E	75 mg/m2	24h	1.1 GBq/m2
3	m2			K			
				G			

Five whole body scintigraphy (WBS) and four 2-beds SPECT/CT acquisitions were performed during S1 and S2: at (1), 4, 24, 48 and 96 hours post injection.

Tumours and organs absorbed doses were compared at S1 and S2 for each schedule using Kruskal-Wallis (KW) and paired Wilcoxon statistical tests

For each patient, Spearman statistical test were conducted to evaluate whether S1 absorbed doses were able to predict absorbed doses during S2.

Dosimetric results S1¹¹¹In: Organs

Inter-group:

No significant differences p > 0.15 (KW-test)

Dosimetric results S2 ¹⁷⁷Lu: Organs

Inter-group:

No significant Differences P > 0.61 (KW-test)

Dosimetric results : S1 & S2 correlation

S1 & S2 organ absorbed doses [mGy/MBq]: all patients together

Using wilcoxon paired test, S1 & S2 organ absorbed doses were not significantly different except for kidneys

Dosimetric results : S1 & S2 correlation

S1 & S2 organ absorbed doses: intra-patient correlation

The worst correlation Spearman rho: 0.7 p < 0.02

One of the best correlation Spearman **rho: 0.9 p < 10⁻³**

Thank you

