MEASUREMENT SYSTEM FOR HIGH CURRENT SHUNTS DC CHARACTERIZATION AT CMI

Nováková Zachovalová, V., Šíra, M. and Streit, J.
Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic,
vnovakovazachovalova@cmi.cz
Method: measurement of ratio of output voltages of the tested and the reference standard by dual channel multimeter. Thus, the resistance of tested standard is calculated:

\[R_x = \frac{U_x}{U_E} \cdot R_E \]

Standards: oil filled and placed in the oil bath, traceability to QHS.

<table>
<thead>
<tr>
<th>Nom.value</th>
<th>Current level</th>
<th>Type</th>
<th>Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 Ω</td>
<td>1A - 3A</td>
<td>1682</td>
<td>Tinsley</td>
</tr>
<tr>
<td>0,02 Ω</td>
<td>5A - 10A</td>
<td>1682</td>
<td>Tinsley</td>
</tr>
<tr>
<td>0,01 Ω</td>
<td>10A - 20A</td>
<td>RN I</td>
<td>Metra</td>
</tr>
<tr>
<td>0,001 Ω</td>
<td>30A - 100A</td>
<td>RN I</td>
<td>Metra</td>
</tr>
</tbody>
</table>
PC AND TC MEASUREMENTS

POWER COEFFICIENT MEASUREMENTS

The power coefficient is easily calculated as:

\[PC_R = \Delta R / \Delta P \]

PCR measured and calculated in current range of 50% - 100% of nominal current.

Typical values of PCR
- **Foil shunts:**
 - < ±4 ppm, unc. < 3.1 ppm
- **Cage shunts:**
 - < ±1.5 ppm, unc. < 1.5 ppm

TEMPERATURE COEFFICIENT MEASUREMENTS

The temperature coefficient is easily calculated as:

\[TC_R = \Delta R / \Delta T \]

TCR measured in temperature range from 18 °C up to 28(30) °C at 1/10 of nominal current.

Typical values of TCR
- **Foil shunts:**
 - -2.8 +0.2 +8 ppm, unc. < 2.1 ppm
- **Cage shunts:**
 - -0.8 +1.7 ppm, unc. < 1.7 ppm
Power dependence

Relative change of R to 1/10 of nominal power (ppm)

Power (W)

BM1 BM2 BM3 BZ3 BZ4 B50/1 V12/80A/2
Temperature dependence

Relative change of R to 18°C (ppm)

Temperature (°C)

BM1, BM2, BM3, BZ3, BZ4, B50/1, V12/80A/2, V12/40A/2, BZ2
CAGE SHUNTS RESULTS

Power dependence

relative change of R to $1/10$ of nominal power (ppm)

Power (W)

-30
-20
-10
0
10
20
30
40
50
60
70
80
90

SP CS3C-0703
SP CS2D-0812
SP CS2D-0813
JV 10 A
CMI 10 A
SIQ 20 A
SIQ 5 A
Temperature dependence of cage shunts
TC and PC measurements combined

Temperature dependence of cage shunts
TC and PC measurements combined

Temperature (°C)

Relative change of R to 18°C (ppm)

SP CS3C-0703 TC
SP CS3C-0703 PC
CMI10A/1 TC
CMI10A/1 PC
<table>
<thead>
<tr>
<th>Origin</th>
<th>Serial No.</th>
<th>Nominal I (A)</th>
<th>Nominal R (mΩ)</th>
<th>Shunt type</th>
<th>I (A)</th>
<th>temp. range (°C)</th>
<th>TC (ppm/°C)</th>
<th>Unc. (ppm/°C)</th>
<th>current range (A)</th>
<th>PC (ppm/W)</th>
<th>Unc. (ppm/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIQ</td>
<td>SIQ07023</td>
<td>5</td>
<td>150</td>
<td>cage</td>
<td>0,5</td>
<td>18°C...28°C</td>
<td>1,1</td>
<td>0,7</td>
<td>2,5A...5A</td>
<td>2,5</td>
<td>1,2</td>
</tr>
<tr>
<td>CMI</td>
<td>CMI/10A/1</td>
<td>10</td>
<td>100</td>
<td>cage</td>
<td>1</td>
<td>18°C...28°C</td>
<td>-0,8</td>
<td>0,33</td>
<td>5A...10A</td>
<td>-1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>JV</td>
<td>-</td>
<td>10</td>
<td>90</td>
<td>cage</td>
<td>1</td>
<td>18°C...28°C</td>
<td>4,0</td>
<td>0,9</td>
<td>5A...10A</td>
<td>5,7</td>
<td>1,2</td>
</tr>
<tr>
<td>BEV</td>
<td>BZ1</td>
<td>15</td>
<td>42</td>
<td>foil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5A...15A</td>
<td>-28,3</td>
<td>1,2</td>
</tr>
<tr>
<td>BEV</td>
<td>BZ2</td>
<td>20</td>
<td>27</td>
<td>foil</td>
<td>2</td>
<td>18°C...28°C</td>
<td>0,20</td>
<td>0,48</td>
<td>10A...20A</td>
<td>-11,9</td>
<td>1,2</td>
</tr>
<tr>
<td>SIQ</td>
<td>SIQ07025</td>
<td>20</td>
<td>35</td>
<td>cage</td>
<td>2</td>
<td>18°C...28°C</td>
<td>3,2</td>
<td>0,7</td>
<td>10A...20A</td>
<td>4,1</td>
<td>1,0</td>
</tr>
<tr>
<td>SP</td>
<td>CS3C-0703</td>
<td>20</td>
<td>40</td>
<td>cage</td>
<td>2</td>
<td>18°C...28°C</td>
<td>1,67</td>
<td>0,33</td>
<td>10A...20A</td>
<td>-0,25</td>
<td>0,82</td>
</tr>
<tr>
<td>BEV</td>
<td>V16/20A/3</td>
<td>20</td>
<td>20</td>
<td>foil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10A...20A</td>
<td>-1,4</td>
<td>3,1</td>
</tr>
<tr>
<td>BEV</td>
<td>V12/40A/2</td>
<td>40</td>
<td>9,5</td>
<td>foil</td>
<td>5</td>
<td>18°C...30°C</td>
<td>6,8</td>
<td>1,1</td>
<td>20A...40A</td>
<td>0,51</td>
<td>1,7</td>
</tr>
<tr>
<td>SP</td>
<td>CS2D-0812</td>
<td>50</td>
<td>16</td>
<td>cage</td>
<td>5</td>
<td>18°C...28°C</td>
<td>1,22</td>
<td>0,83</td>
<td>30A...50A</td>
<td>-0,07</td>
<td>0,51</td>
</tr>
<tr>
<td>BEV</td>
<td>BM1</td>
<td>50</td>
<td>15</td>
<td>foil</td>
<td>5</td>
<td>18°C...28°C</td>
<td>7,4</td>
<td>1,3</td>
<td>25A...50A</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>BEV</td>
<td>V12/80A/2</td>
<td>80</td>
<td>5</td>
<td>foil</td>
<td>10</td>
<td>18°C...30°C</td>
<td>8,0</td>
<td>2,1</td>
<td>40A...80A</td>
<td>1,48</td>
<td>0,68</td>
</tr>
<tr>
<td>BEV</td>
<td>B50/1</td>
<td>100</td>
<td>10</td>
<td>foil</td>
<td>10</td>
<td>18°C...30°C</td>
<td>7,7</td>
<td>1,0</td>
<td>50A...100A</td>
<td>-3,97</td>
<td>0,21</td>
</tr>
<tr>
<td>BEV</td>
<td>BZ3</td>
<td>100</td>
<td>8,5</td>
<td>foil</td>
<td>10</td>
<td>18°C...28°C</td>
<td>-2,8</td>
<td>1,5</td>
<td>50A...100A</td>
<td>-2,23</td>
<td>0,16</td>
</tr>
<tr>
<td>BEV</td>
<td>BZ4</td>
<td>100</td>
<td>5,5</td>
<td>foil</td>
<td>10</td>
<td>18°C...28°C</td>
<td>0,5</td>
<td>0,5</td>
<td>50A...100A</td>
<td>-0,68</td>
<td>0,90</td>
</tr>
<tr>
<td>SP</td>
<td>CS2D-0813</td>
<td>100</td>
<td>8</td>
<td>cage</td>
<td>10</td>
<td>18°C...28°C</td>
<td>1,2</td>
<td>1,7</td>
<td>50A...100A</td>
<td>-0,06</td>
<td>0,20</td>
</tr>
<tr>
<td>BEV</td>
<td>BM2</td>
<td>100</td>
<td>5</td>
<td>foil</td>
<td>10</td>
<td>18°C...28°C</td>
<td>7,3</td>
<td>1,5</td>
<td>50A...100A</td>
<td>-1,1</td>
<td>1,0</td>
</tr>
<tr>
<td>BEV</td>
<td>BM3</td>
<td>100</td>
<td>5</td>
<td>foil</td>
<td>10</td>
<td>18°C...28°C</td>
<td>6,8</td>
<td>1,5</td>
<td>50A...100A</td>
<td>-1,3</td>
<td>1,0</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Most significant influences of measurements (except of working standard calibration): temperature influence on air cooled shunts and/or standard deviation of measured voltages ratio.

Future work focus on measuring of temperature dependence of Vishays resistors.

ACKNOWLEDGEMENTS

Authors special thank Mr. Martin Garcocz (BEV), Valter Tarasso (SP), Matjaz Lindic (SIQ) and Kåre Lind for cooperation and shunts lending. The research presented in this paper is part of the EURAMET joint research project on "Power and Energy" and has received funding from the European Community's Seventh Framework Programme, ERA-NET Plus, under Grant Agreement No. 217257.

REFERENCES