Characterisation of a wideband digitiser for power measurements up to 1 MHz

Gert Rietveld (1), D. Zhao (1), C. Kramer (2), E. Houtzager (1), O. Kristensen (2), C. de Leffe (2,3), and T. Lippert (2)

(1) VSL, Delft, P.O. Box 654, 2600 AR Delft, The Netherlands; www.vsl.nl, grietveld@vsl.nl
(2) Trescal A/S, Mads Clausens Vej 12, 8600 Silkeborg, Denmark.
(3) Université de Savoie - Polytech'Savoie, BP 80439, 74944 Annecy le Vieux Cedex, France.

Abstract. A two-channel high-speed digitizer is extensively characterized in the frequency range of 50 Hz to 1 MHz. The measurements involve ac flatness, phase, linearity, input impedance and the effects of dc offsets, temperature, and internal self-calibration routine.

The overall uncertainty contribution of the digitiser in wideband power measurements under practical circumstances is not more than 70 μW/VA and 400 μW/VA ($k = 1$) at 10 kHz and 1 MHz respectively.

Digitiser
NI PXI-5922 two-channel digitizer
- 2 V_{pp} and 10 V_{pp} ranges, with 1 MΩ input impedance.
- 100 kSa/s – 10 kHz, 1 MSa/s – 100 kHz, 10 MSa/s – 1 MHz
- 24 bit (100 kSa/s) – 18 bit (10 Msa/s).

Characterisation set-up
Digitiser (left, top) with ac reference meter and signal source.

Phase deviation
Phase deviation is linear in frequency and not affected by inverse filter (inset), f_{sa}: signal amplitude or signal phase.
Model: time delay of (250 ± 30) ps between channels for 2 V_{pp} range.

Additional effects
- Input impedance can be approximated by 1 MΩ // 55 pF, with the resistance being frequency dependent above 10 kHz.
- Temperature coefficient is significant: -35 μV/V/°C and -45 μV/V/°C respectively for the two channels in the 2 V_{pp} range
- Self-calibration routine: < 30 μV/V and < 0.5 m° variation at 1 MHz

Uncertainty budget 1 MHz power, phase 90°

<table>
<thead>
<tr>
<th>Channel</th>
<th>Calibration</th>
<th>Stability</th>
<th>Flatness</th>
<th>Linearity</th>
<th>Self-calibration</th>
<th>Temperature</th>
<th>Phase</th>
<th>Error correction</th>
<th>Self-calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
<td>Uniform</td>
<td>Uniform</td>
<td>Uniform</td>
<td>Uniform</td>
<td>Uniform</td>
<td></td>
<td>Uniform</td>
<td>Uniform</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Normal</td>
<td>Uniform</td>
<td>Uniform</td>
<td>Uniform</td>
<td>Uniform</td>
<td>Uniform</td>
<td></td>
<td>Uniform</td>
<td>Uniform</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

355 Combined Uncertainty:

At 10 kHz, typical total uncertainty is 67 μW/VA (best < 20 μW/VA)

VSL is part of the Holland Metrology group. This work was supported by the Dutch Ministry of Economic Affairs and the Danish Ministry of Science, Technology and Innovation. It received additional funding from the European Community’s Seventh Framework Programme ERANET Plus under Grant Agreement 217257 (as part of the “Power and Energy” project).