

Measurement Uncertainty of High-Temperature Guarded Hot Plate Instruments Uncertainty budget workshop 3

18 month meeting
Stakeholder meeting
NPL, UK

Overview

- Measurement uncertainty
 - General remarks
 - ISO GUM JCGM 100:2008
- High-Temperature Guarded Hot Plate
 - Ideal model
 - Real model
 - Uncertainty budget
- Summary

within EURAMET and the European Union

General remarks

- measurement result:
 - measured quantity value + measurement uncertainty
- uncertainty assessment:
 - to be able to state the measurement uncertainty
 - to analyse the measuring instrument
 - find weak points
 - improve the measuring instrument

ISO GUM, JCGM 100:2008

- measurement uncertainty
- mathematical model: $y = f(x_1, x_2, ..., x_N)$ here (GHP), according to Fourier's eq. $\lambda = \frac{\Phi \cdot d}{A \cdot \Lambda T}$
- type A evaluation: statistical analysis
- type B evaluation: other means (e.g. estimate)
- combined standard variance:

$$u_c^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i)$$

combined standard uncertainty:

$$u_c(y) = \sqrt{u_c^2(y)}$$

HT Guarded Hot Plate

two specimens version

	cold plate						
	test specimen						
edge guard	guard surface plate guard heater guard surface plate	central surface plate central heater central surface plate	guard surface plate guard heater guard surface plate	edge guard			
	test specimen cold plate						

HT Guarded Hot Plate

Ideal model

$$\lambda = \frac{\boldsymbol{\Phi} \cdot \boldsymbol{d}}{A \cdot \Delta T}$$

rate of heat flow Φ supplied to the hot plate specimen thickness d measuring area Atemperature difference ΔT

model for a **perfect** GHP

HT Guarded Hot Plate

- Real model
 - start with ideal model
 - correct systematic measurement errors
 - thickness
 - metering area
 - temperature drop
 - power
 - miscellaneous factors

Uncertainty budget

- list of all quantities influencing the measurement uncertainty
 - type A (evaluated by statistical means)
 - type B (evaluated by other means)
- calculation of the standard deviation
- verification
 - certified reference material
 - perform measurements
 - use statistics
 - average and exp. standard deviation of the mean
 - other possibilities to verify measurement uncertainty:
 - intercomparison studies
 - round robin tests

within EURAMET and the European Union

Thickness measurement

- 1) thickness measurement outside HTGHP apparatus
 - resolution and calibration of the callipers
 - misalignment
 - operator effect
 - thermal expansion
 - thermal expansion coefficient
 - uncertainty in mean specimen temperature
- 2) in-situ thickness measurement
 - resolution and calibration of the laser displacement sensor
 - correction for thermal expansion of the specimen stack
- variation in specimen thickness over the measuring area
- calibration of straight edge and feeler gauge
- effect of pressure
- compressible samples: thermal expansion of spacer blocks

Metering area

- determination of the metering area:
 - average of the diameter of the hot plate and the diameter of the inner edge of the guard ring
 - correction for thin specimens
- calibration and resolution of the callipers
- misalignment
- operator effect
- thermal expansion
 - thermal expansion coefficient
 - uncertainty in mean hot plate temperature

Temperature drop

- calibration and resolution of the voltmeter
- calibration of temperature sensors
- stability and batch agreement of temperature sensors
- temperature spread
 - across metering area
 - across cold plate
- parasitic voltages (connections and switches)
- correction for position of thermocouples

Power measurement

- calibration of the two voltmeters (voltage and current)
- calibration of the standard resistor
- parasitic voltages
- correction for heated length outside the metering area

Miscellaneous factors

- temperature imbalance between guard ring and metering area
- temperature imbalance between auxiliary guard and metering area (for single specimen apparatus)
- edge heat loss/gain of the sample
- heat loss/gain between hot plate and auxiliary guard plate (for single specimen apparatus)
- potential deviation from 'true' thermal equilibrium

Absolute mean temperature

(specimen related)

- calibration and homogeneity of the temperature sensors
- in-situ temperature sensor calibration:
 - uncertainty of the PRT
 - calibration and resolution of the voltmeter
 - cold junction temperature

Miscellaneous factors

(specimen related)

- thermal contact resistance between heater plates and sample(s)
- thermal contact resistance between temperature sensors and specimen(s)
- specimen homogeneity
- uncertainty in mean temperature of the sample(s)
- variation of thermal conductivity of the specimen(s) with temperature
- emissivity of the heater plates
- slight difference between the two specimens

Example uncertainty budget

Uncertainty budget of PTB's GHP

Quantity X _i	Estimate x _i	Prob. distrib.	sensitivity coeff. c _i	Stand. unc. u(x _i)	u _i (y)	[u _i (y)/u _c (y)] ²
P_{0}	8.9 W	normal	$1.27 \times 10^{-1} \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$	$2.3 \times 10^{-4} \mathrm{W}$	$2.9 \times 10^{-5} \mathrm{W \cdot m^{-1} \cdot K^{-1}}$	0.007 %
P_{x}	0 W	normal	$-1.27 \times 10^{-1} \text{m}^{-1} \cdot \text{K}^{-1}$	$3.9 \times 10^{-4} \text{W}^{-1}$	$-5.0 \times 10^{-5} \mathrm{W \cdot m^{-1} \cdot K^{-1}}$	0.002 %
P_{V1}	0 W	normal	$-1.27 \times 10^{-1} \text{m}^{-1} \cdot \text{K}^{-1}$	$9.2 \times 10^{-4} \mathrm{W}^{-1}$	$-1.2 \times 10^{-5} \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$	0.01 %
P_{V2}	0 W	normal	$-1.27 \times 10^{-1} \text{m}^{-1} \cdot \text{K}^{-1}$	$9.2 \times 10^{-4} \text{W}^{-1}$	$-1.2 \times 10^{-5} \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$	0.01 %
P_{V3}	0 W	normal	$-1.27 \times 10^{-1} \text{m}^{-1} \cdot \text{K}^{-1}$	$9.2 \times 10^{-4} \mathrm{W}^{-1}$	$-1.2 \times 10^{-5} \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$	0.01 %
A_0	7853.98 × 10 ⁻⁶ m ²	rectangular	$-1.44 \times 10^{-3} \mathrm{W} \cdot \mathrm{m}^{-3} \cdot \mathrm{K}^{-1}$	$7.9 \times 10^{-6} \text{m}^2$	$-1.1 \times 10^{-5} \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$	0.9 %
d_0	10 × 10 ⁻³ m	rectangular	$1.13 \times 10^{-2} \mathrm{W \cdot m^{-2} \cdot K^{-1}}$	5.0 × 10 ⁻⁶ m	$5.8 \times 10^{-5} \mathrm{W \cdot m^{-1} \cdot K^{-1}}$	0.3 %
ΔT_0	10 K	normal	$-1.13 \times 10^{-1} \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-2}$	$5.7 \times 10^{-2} \mathrm{K}$	$-6.4 \times 10^{-5} \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$	32.9 %
ΔT_b	0 K	normal	$1.13 \times 10^{-1} \mathrm{W \cdot m^{-1} \cdot K^{-2}}$	$5.7 \times 10^{-2} \mathrm{K}$	$6.4 \times 10^{-5} \mathrm{W \cdot m^{-1} \cdot K^{-1}}$	32.9 %
ΔT_c	0 K	normal	$1.13 \times 10^{-1} \mathrm{W \cdot m^{-1} \cdot K^{-2}}$	$5.7 \times 10^{-2} \mathrm{K}$	$6.4 \times 10^{-5} \mathrm{W \cdot m^{-1} \cdot K^{-1}}$	32.9 %
λ	1.13 W·m ⁻¹ ·K ⁻¹				0.011 W·m ⁻¹ ·K ⁻¹	

published in: U. Hammerschmidt, Int. J. Thermophys., Vol. 23, No. 6, pp. 1551-1570 November 2002

Summary

- many quantities influence the measurement uncertainty of a HTGHP
- careful uncertainty assessment necessary
 - find weak points
 - improve measurement instrument
 - state measurement uncertainty

