Industrial High-Temperature Thermal Conductivity Measurements Review EMRP SIB 52 Thermo Stakeholder Meeting NPL, UK #### Overview - Industrial techniques for thermal conductivity measurements - Steady-state instruments - Transient instruments - Commercial instruments - Summary ## Steady-state instruments - measure thermal conductivity in one direction - one-directional stationary heat flow assumed - specimen(s) sandwiched between heat source and heat sink - simple working equation - long run times - large temperature difference across the sample(s) - Guarded Hot Plate (GHP) - absolute method - Heat Flow Meter (HFM) - comparative method within EURAMET and the European Union #### Transient instruments - short run times - complex working equations evaluation of T history with software - with contact: heat source (= thermometer) between 2 samples (= heat sinks) - Transient Hot Wire (THW) - simple setup - high operating temperature - Transient Plane Source (TPS) - evaluation of th. conductivity and th. diffusivity by an iteration process - without contact: th. radiation source; measure T on rear side of the sample - Laser/Xenon Flash (LFA, XFA) - broad working temperature range - limited to very small and homogeneous samples # Commercial instruments | Manufacturer
<i>Type</i> | Technique | Meas. Range
W·m ⁻¹ ·K ⁻¹ | Max. Temp.
°C | Accuracy/
Uncertainty | Sample dim. | |--|--------------------------|---|---------------------------------------|-----------------------------|--| | Hotdisk AB
TPS series (mica sensor) | TPS | 0.005 – 1800 | 1000 | < 5 % | min. Ø 13 × 3 mm² | | Laser Comp
FOX 300 HT
GHP 600 | HFM
GHP | 0.1 – 10
0.1 – 10 | 250
250 | > 1 % (40 °C) | ≤ Ø 51 mm | | Linseis Messgeräte GmbH
XFA 500
LFA 1000 | XFA
LFA | 0.1 – 2000
0.1 – 2000 | 500
1600 | nn
nn | both instruments:
(a) $\leq \emptyset$ 25.4 × 6 mm ²
(b) 10 × 10 × 6 mm ³ | | Netzsch Thermal Analysis
Titan 456
LFA 427/457
LFA 447/467
TCT 426 | GHP
LFA
XFA
THW | 0.005 - 20
0.1 - 2000
0.1 - 2000
< 2 | 250
≤ 2800
≤ 500
1250 (1500) | < 2 % nn nn nn | $300 \times 300 \times \le 100 \text{ mm}^3$
all LFA/XFAs:
(a) $\le \varnothing 12.7 \times 6 \text{ mm}^2$
(b) $10 \times 10 \times 6 \text{ mm}^3$
$250 \times 125 \times 75 \text{ mm}^3$ | | Taurus
TLP 500 HT | GHP | 0.01 – 0.5 | 400 (500) | nn | 250 × 250 mm ²
500 × 500 mm ² | | TA Instruments DTC 300 DXF and DLF series | HFM
LFA | 0.1 – 40
0.1 – 2000 | 300
≤ 2800 | 3 % - 8 %
5 % | Ø 50 × 25.4 mm ²
≤ Ø 25.4 × 6 mm ² | | Ulvac Riko
GH series
TC 9000 | HFM
LFA | 0.1 – 15
nn | 280
1500 | nn
5 % (th. diffusivity) | \emptyset 50 × 20 mm ² \emptyset 10 × 3 mm ² | Features as specified by the instrument manufacturers' websites. ### Summary - many instruments commercially available for - thermal conductivity $0.01 \le \lambda \le 7 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ - temperatures 10 ≤ T ≤ 70 °C - no instrument commercially available that fits all requirements - high temperatures (at least 800 °C) - low thermal conductivity (0.02 W·m⁻¹·K⁻¹) - not limited to very small samples - small measurement uncertainty - usage of self-made HT-instruments