

Industrial High-Temperature Thermal Conductivity Measurements Review

EMRP SIB 52 Thermo Stakeholder Meeting NPL, UK

Overview

- Industrial techniques for thermal conductivity measurements
 - Steady-state instruments
 - Transient instruments
- Commercial instruments
- Summary

Steady-state instruments

- measure thermal conductivity in one direction
 - one-directional stationary heat flow assumed
- specimen(s) sandwiched between heat source and heat sink
- simple working equation
- long run times
- large temperature difference across the sample(s)
 - Guarded Hot Plate (GHP)
 - absolute method
 - Heat Flow Meter (HFM)
 - comparative method

within EURAMET and the European Union

Transient instruments

- short run times
- complex working equations evaluation of T history with software
- with contact: heat source (= thermometer) between 2 samples (= heat sinks)
 - Transient Hot Wire (THW)
 - simple setup
 - high operating temperature
 - Transient Plane Source (TPS)
 - evaluation of th. conductivity and th. diffusivity by an iteration process
- without contact: th. radiation source; measure T on rear side of the sample
 - Laser/Xenon Flash (LFA, XFA)
 - broad working temperature range
 - limited to very small and homogeneous samples

Commercial instruments

Manufacturer <i>Type</i>	Technique	Meas. Range W·m ⁻¹ ·K ⁻¹	Max. Temp. °C	Accuracy/ Uncertainty	Sample dim.
Hotdisk AB TPS series (mica sensor)	TPS	0.005 – 1800	1000	< 5 %	min. Ø 13 × 3 mm²
Laser Comp FOX 300 HT GHP 600	HFM GHP	0.1 – 10 0.1 – 10	250 250	> 1 % (40 °C)	≤ Ø 51 mm
Linseis Messgeräte GmbH XFA 500 LFA 1000	XFA LFA	0.1 – 2000 0.1 – 2000	500 1600	nn nn	both instruments: (a) $\leq \emptyset$ 25.4 × 6 mm ² (b) 10 × 10 × 6 mm ³
Netzsch Thermal Analysis Titan 456 LFA 427/457 LFA 447/467 TCT 426	GHP LFA XFA THW	0.005 - 20 0.1 - 2000 0.1 - 2000 < 2	250 ≤ 2800 ≤ 500 1250 (1500)	< 2 % nn nn nn	$300 \times 300 \times \le 100 \text{ mm}^3$ all LFA/XFAs: (a) $\le \varnothing 12.7 \times 6 \text{ mm}^2$ (b) $10 \times 10 \times 6 \text{ mm}^3$ $250 \times 125 \times 75 \text{ mm}^3$
Taurus TLP 500 HT	GHP	0.01 – 0.5	400 (500)	nn	250 × 250 mm ² 500 × 500 mm ²
TA Instruments DTC 300 DXF and DLF series	HFM LFA	0.1 – 40 0.1 – 2000	300 ≤ 2800	3 % - 8 % 5 %	Ø 50 × 25.4 mm ² ≤ Ø 25.4 × 6 mm ²
Ulvac Riko GH series TC 9000	HFM LFA	0.1 – 15 nn	280 1500	nn 5 % (th. diffusivity)	\emptyset 50 × 20 mm ² \emptyset 10 × 3 mm ²

Features as specified by the instrument manufacturers' websites.

Summary

- many instruments commercially available for
 - thermal conductivity $0.01 \le \lambda \le 7 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$
 - temperatures 10 ≤ T ≤ 70 °C
- no instrument commercially available that fits all requirements
 - high temperatures (at least 800 °C)
 - low thermal conductivity (0.02 W·m⁻¹·K⁻¹)
 - not limited to very small samples
 - small measurement uncertainty
- usage of self-made HT-instruments