

Uncertainty Workshop: Overview of uncertainty factors in HTGHPs

EMRP SIB52 Thermo Final Stakeholder Meeting NPL, Teddington, United Kingdom

within EURAMET and the European Union

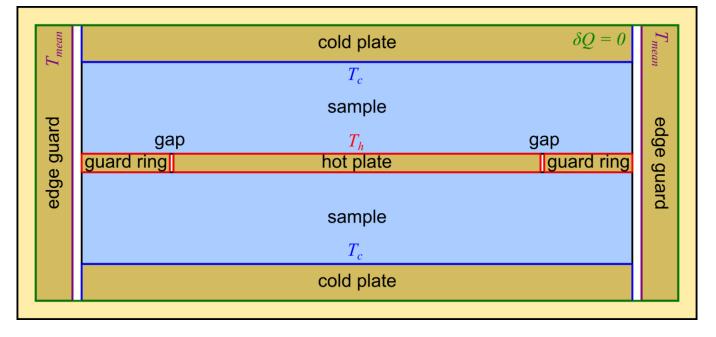
The EMRP is jointly funded by the EMRP participating countries

 $\langle \bigcirc \rangle$

12.05.2016

Ulf Hammerschmidt, Maya Krause PTB, Germany

DIN/EU Standards for GHPs



- **ISO 8302:1991** Thermal insulation Determination of steady-state thermal resistance and related properties Guarded hot plate apparatus
- **EN 1946-2:1999** Thermal performance of building products and components Specific criteria for the assessment of laboratories measuring heat transfer properties Part 2: Measurements by the guarded hot plate method
- **EN 12664:2001** Thermal performance of building materials and products Determination of thermal resistance by means of guarded hot plate and heat flow meter methods Dry and moist products with medium and low thermal resistance
- EN 12667:2001 Thermal performance of building materials and products -Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Products of high and medium thermal resistance
- **EN 12939:2001** Thermal performance of building materials and products Determination of thermal resistance by means of guarded hot plate and heat flow meter methods Thick products of high and medium thermal resistance
- CEN/TS 15548-1:2014 Thermal insulation products for building equipment and industrial installations - Determination of thermal resistance by means of the guarded hot plate method - Part 1: Measurements at elevated temperatures from 100 °C to 850 °C

Guarded Hot-Plate apparatus

Working equation for two-specimen apparatus:

$$\lambda(T_m) = \frac{\Phi \cdot d}{2 \cdot A \cdot (T_h - T_c)} \quad \text{with} \quad T_m = (T_h + T_c)/2$$

within EURAMET and the European Union

The EMRP is jointly funded by the EMRP participating countries

Uncertainty assessment

• According to the *Guide to the Expression of uncertainty in Measurement* (GUM)

• Ideal model:
$$\lambda(T_m) = \frac{\Phi \cdot d}{2 \cdot A \cdot (T_h - T_c)}$$

• Combined standard uncertainty of heat conductivity $\lambda(x) = \lambda(\Phi, d, A, T_h, T_c)$:

$$u_{c}(\lambda) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial \lambda(x)}{\partial x_{i}}\right)^{2} u^{2}(x_{i})}$$

Real model, e.g., HTGHP LNE1

$$\begin{split} \lambda(T_m) &= \frac{\Phi}{A \cdot \left[\frac{(T_{HP,1} - T_{CP,1})}{d_1} + \frac{(T_{HP,2} - T_{CP,2})}{d_2}\right]} \\ &+ \Delta \lambda_{HP-GR-imbalance} + \Delta \lambda_{S-EG-imbalance} + \Delta \lambda_{TCR} \end{split}$$

$$\begin{split} T_{m} &= \frac{T_{HP,1} + T_{CP,1} + T_{HP,2} + T_{CP,2}}{4} \\ \Phi &= \alpha_{junct} \cdot \frac{U_{heat} \cdot U_{res}}{R_{res}(T_{res})} \\ A &= \left[1 + \alpha_{HP} \cdot \left(T_{HP} - T_{0} \right) \right]^{2} \cdot \frac{\left[l_{HP}^{2} \left(T_{0} \right) + l_{GR}^{2} \left(T_{0} \right) \right]}{2} \\ d &= d_{0} \cdot \left[1 + \alpha_{d} \cdot \left(T_{m} - T_{0} \right) \right] \end{split}$$

 $\alpha_{\it junct}$: powerdissipatimoof junctions

 U_{heat} : voltageofheating wire

 $U_{\it res}$:voltageofstandardesistor

 R_{res} :resistance fstandardesistor

 α_{HP} : thermalexpansion coefficient of hotplate

- l_{HP} : lengthofhotplate
- $l_{\it GR}$: innerlengthof guardring

 α_d : therma expansion coefficient of sample

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Uncertainty sources

1) Equipment related uncertainties:

- a) Specimen thickness
- b) Metering area
- c) Temperature difference across specimen
- d) Input power of the hot plate
- e) Miscellaneous uncertainty sources

2) Specimen related uncertainties:

- a) Absolute mean temperature
- b) Miscellaneous uncertainty sources

within EURAMET and the European Union

1a) Specimen thickness

Measurement at room temperature outside GHP (with e.g. calliper, straight edge, feeler gauge):

Calibration of instrument(s)

Resolution of instrument(s)

Drift of instrument(s)

In-situ measurement inside GHP with laser displacement sensor:

Calibration of instrument

Resolution of instrument

Fitting error of the calibration of laser displacement error

Drift of instrument

Influence of ambient conditions on instrument

Thermal expansion of GHP (e.g., plates)

Reproducibility of thickness measurement

Variation in sample thickness

Effect of pressure applied to the sample

12.05.2016

European Metrology Research Programme Programme of EURAMET

1a) Specimen thickness

Corrections for thermal expansion:

Thermal expansion coefficient

Mean sample temperature (T_0, T)

Thermal expansion of spacer blocks (for compressible materials)

Effect of pressure applied to the sample (for compressible materials)

Variation of thickness with pressure (for compressible materials)

Miscellaneous uncertainty factors:

Operator effect (including vertical misalignment; variation in reading from different operators, noises on results)

Temperature effect

Effect of pressure load for double specimen GHP

Ulf Hammerschmidt, Maya Krause PTB, Germany

12.05.2016

1b) Metering area

Dimension measurement at room temperature (diameter of hot plate, inner diameter of guard ring):

Calibration of calliper

Resolution of calliper

Drift of calliper

Operator effect (including misalignment, repeatability of the measurement)

Corrections for thermal expansion:

Thermal expansion coefficient of hot plate

Thermal expansion coefficient of guard ring

Mean temperature of hot plate (T_0, T)

Mean temperature of guard ring (T_0, T)

1c) Temperature drop across specimen

Uncertainties of digital voltmeter (dvm): Calibration of dym Resolution of dvm Drift of dvm Uncertainties of thermocouples (tcs): Calibration of tcs: Calibration of the standard temperature sensor Drift of the standard temperature sensor Isothermal conditions when calibrating sensors Noises on results of calibration Electrical connections (parasitical emf) Cold junction temperature Response model used for each sensor

12.05.2016

10

1c) Temperature drop across specimen

Uncertainties of thermocouples (tcs):

Interpolation error of tcs

Spread of tcs from fitting curves (differences between tcs)

Drift of each sensor

Noise of each temperature result (repeatability)

Temperature stability (variation with time)

Parasitic voltages (connections, switches)

Homogeneity of tc (along the sensor)

Heat conduction of tc stem

Installation, position of tcs

Homogeneity:

Temperature spread across metering area

Temperature spread across the heated cold plate

1d) Input power of the hot plate

Uncertainties of voltage measurement with digital voltmeter (dvm):

The Entry to Forthy funded by the Entry participating					
Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Uncertainties of current measurement with digital voltmeter (dvm): Calibration of dvm Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections UIf Hammerschmidt, Maya Krause PTB, Germany 12	Calibration of dvm				
Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Uncertainties of current measurement with digital voltmeter (dvm): Calibration of dvm Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Resolution of dvm				
Corrections due to conditions differing from those of calibration Electrical connections Uncertainties of current measurement with digital voltmeter (dvm): Calibration of dvm Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections 2.05.2016 Ulf Hammerschmidt, Maya Krause PTB, Germany 12 The DMP is ground by the DMP patient	Drift of dvm				
Electrical connections Uncertainties of current measurement with digital voltmeter (dvm): Calibration of dvm Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12 The EMP is jointy funded by the EMP particulary	Repeatability, noises				
Uncertainties of current measurement with digital voltmeter (dvm): Calibration of dvm Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Corrections due to conditions differing from those of calibration				
Calibration of dvm Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12 The EMPP participating.	Electrical connections				
Resolution of dvm Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections 2.05.2016 Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Uncertainties of curre	nt measurement with digital voltmeter (dvm):			
Drift of dvm Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12 The EMRP is jointy funded by the EMRP participating	Calibration of dvm				
Repeatability, noises Corrections due to conditions differing from those of calibration Electrical connections 2.05.2016 Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Resolution of dvm				
Corrections due to conditions differing from those of calibration Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Drift of dvm				
Electrical connections Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Repeatability, noises				
2.05.2016 Ulf Hammerschmidt, Maya Krause PTB, Germany 12	Corrections due to co	onditions differing from those of calibration			
2.05.2016 Ulf Hammerschmidt, Maya Krause PTB, Germany 12 The EMRP is jointly funded by the EMRP participating	Electrical connection	IS			
within Ecrowich and the European Onion	05.2016	Ulf Hammerschmidt, Maya Krause PTB, Germany	12	Programme of EURAMET	

1d) Input power of the hot plate

EURAMET SIB52 Thermo

Uncertainties of resistor measurement:

Calibration of standard (shunt) resistor

Drift of shunt resistor

Corrections due to conditions differing from those of calibration

Uncertainties due to resistance of cold ends (for cable heaters):

Length of wire in metering area

Total length of heater wire

Resistance of heating element/wires

Effect of electrical resistance between metering heater and lateral guard heater

Impedance of electrical insulation (for high T)

Stability of power source

12.05.2016

1e) Miscellaneous uncertainties

Lateral heat flow across gap between main heater and guard ring due to temperature imbalance (centre-guard imbalance)

Edge heat losses at gap between main heater and guard ring (influence of gap content)

Heat transfer (conduction, convection, radiation) at lateral edges of specimen at transition to gap and/or edge guard

For single-specimen GHPs: heat transfer between metering and auxiliary area

Deviation from steady state conditions (thermal equilibrium)

Flatness of heater plates

Emissivity of heater plates

Repeatability, reproducibility of thermal conductivity measurement (dispersion of results)

2) Specimen related uncertainties

a) Absolute mean temperature:

Calibration of tcs

Spread of tcs from fitting curves

Resolution of dvm

Calibration uncertainty of the PRT

Calibration of dvm

Interpolation error of tcs

2) Specimen related uncertainties

b) Miscellaneous uncertainty sources:

For porous samples: effective thermal conductivity = thermal conductivity of solid material, gas-filled pores \rightarrow temperature-dependent thermal conductivity

For porous, (semi-)transparent samples: effective thermal conductivity = thermal conductivity of solid material, gas-filled pores, radiation

 \rightarrow temperature-dependent thermal conductivity

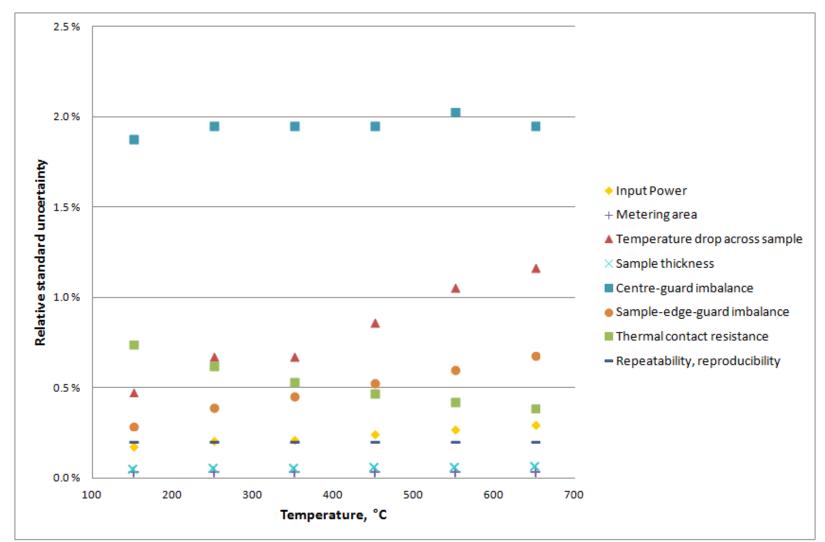
Inhomogeneity of specimen

For two-specimen GHPs: Non-identical specimens

Thermal contact resistance between specimen and plates

Thermal contact resistance between specimen and thermocouples

Example: HTGHP LNE1, HDCaSi


Uncertainty source	Percentage of overall uncertainty at 650 °C	Percentage of overall uncertainty at 150 °C
Metering area	1	1
Thickness of specimens	1	1
Repeatability, reproducibility	4	5
Power supplied to metering heater	6	5
Thermal contact resistance	8	19
Temperature imbalance between specimen and edge guard	14	7
Temperature difference across specimens	24	12
Temperature imbalance between metering heater and guard ring	41	49

12.05.2016

Example: HTGHP LNE1, HDCaSi

=MRP

Conclusions

- Uncertainties with lowest influence:
 - Specimen thickness
 - Metering area
- Most prominent uncertainty:
 - Temperature imbalance between metering heater and guard ring
- Increasing uncertainties with increasing temperature:
 - Temperature drop across specimen
 - Temperature imbalance between specimen and edge guard
 - Input power of metering heater
- Decreasing uncertainty with increasing temperature:
 - Thermal contact resistance

